import numpy as np def convolve(f, g): tf = np.array(f, np.int64) tg = np.array(g, np.int64) fft_len = 1 while 2 * fft_len < len(tf) + len(tg) - 1: fft_len *= 2 fft_len *= 2 # フーリエ変換 Ff = np.fft.rfft(tf, fft_len) Fg = np.fft.rfft(tg, fft_len) # 各点積 Fh = Ff * Fg # フーリエ逆変換 h = np.fft.irfft(Fh, fft_len) # 小数になっているので、整数にまるめる h = np.rint(h).astype(np.int64) return h[:len(f) + len(g) - 1] def convolve2(f,g,p): f1,f2 = np.divmod(f,1<<15) g1,g2 = np.divmod(g,1<<15) a = convolve(f1,g1)%p c = convolve(f2,g2)%p b = (convolve(f1+f2,g1+g2) - a - c)%p h = (a<<30) + (b<<15) + c return h%p def convolve_pow(f,n,p): nbit = list(str(bin(n))[2:]) nbit = [int(i) for i in nbit] N = len(f) C = [1] + [0]*(N-1) B = f for i in range(len(nbit)): if nbit[-1-i] == 1: C = convolve2(C,B,p) B = convolve2(B,B,p) return C T = int(input()) a,b,c,d,e = map(int,input().split()) a = abs(a) b = abs(b) c = abs(c) mod = 10**9 + 7 M = max(a,b,c) X = [0]*(2*M+1) X[M+a] += 1 X[M-a] += 1 X[M+b] += 1 X[M-b] += 1 X[M+c] += 1 X[M-c] += 1 print(sum(convolve_pow(X,T,mod)[max(d+M*T,0):e+M*T+1]))