use std::cmp::*; use std::io::Read; fn get_word() -> String { let stdin = std::io::stdin(); let mut stdin=stdin.lock(); let mut u8b: [u8; 1] = [0]; loop { let mut buf: Vec = Vec::with_capacity(16); loop { let res = stdin.read(&mut u8b); if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { break; } else { buf.push(u8b[0]); } } if buf.len() >= 1 { let ret = String::from_utf8(buf).unwrap(); return ret; } } } #[allow(dead_code)] fn get() -> T { get_word().parse().ok().unwrap() } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt { pub x: i64, phantom: ::std::marker::PhantomData } impl ModInt { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl Default for ModInt { fn default() -> Self { Self::new_internal(0) } } impl>> Add for ModInt { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl>> Sub for ModInt { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl>> Mul for ModInt { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl>> AddAssign for ModInt { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl>> SubAssign for ModInt { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl>> MulAssign for ModInt { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl Neg for ModInt { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl ::std::fmt::Display for ModInt { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl From for ModInt { fn from(x: i64) -> Self { Self::new(x) } } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt

; // Depends on MInt.rs fn fact_init(w: usize) -> (Vec, Vec) { let mut fac = vec![MInt::new(1); w]; let mut invfac = vec![0.into(); w]; for i in 1..w { fac[i] = fac[i - 1] * i as i64; } invfac[w - 1] = fac[w - 1].inv(); for i in (0..w - 1).rev() { invfac[i] = invfac[i + 1] * (i as i64 + 1); } (fac, invfac) } // https://yukicoder.me/problems/no/1757 (3.5) // 単一の問題を解くのであれば、各連結成分に対する min(V, E) の合計を求めれば良い。 // ここで、E = V - 1 の場合にのみこの値は V-1 となり、それ以外の場合はすべて V となることに着目する。s(f, S) := (f: A, B の選び方 として、S が連結成分となり、S の上の全域木でもある場合 1、そうでない場合 0) とすると、求めたい値は (A, B の選び方に対する M の和) - \sum_{f, S} s(f, S) = M^{2N+1} - \sum_{f, S} s(f, S) である。 // S を固定した時の \sum_{f} s(f, S) は、s(f, S) = 1 であるような f の個数であるため、(S の上の全域木の個数) * (全域木の |S| - 1 辺を N 辺の中に配置する方法の総数) * (残り N - |S| + 1 辺の選び方) = a^{a-2} * C(N, a-1) * (a-1)! * (M-a)^{2(N-a+1)} (ただし a := |S| とする) である。 // これの S を動かした時の和は \sum_{1 <= a <= M} C(M, a) * a^{a-2} * C(N, a-1) * (a-1)! * (M-a)^{2(N-a+1)} であり、これは高速に計算できる。 // -> 辺の向きが 2 種類あるのを忘れていた。引くべき値は \sum_{1 <= a <= M} C(M, a) * a^{a-2} * 2^{a-1} * C(N, a-1) * (a-1)! * (M-a)^{2(N-a+1)} である。 // Tags: counting-spanning-trees, exchange-in-sum fn main() { let n: usize = get(); let m: usize = get(); let (fac, invfac) = fact_init(max(n, m) + 1); let mut tot = MInt::new(0); for a in 1..min(n + 1, m) + 1 { let mut tmp = MInt::new(a as i64).pow(max(a as i64 - 2, 0)); tmp *= MInt::new(2).pow(a as i64 - 1); tmp *= fac[n] * invfac[n + 1 - a]; tmp *= fac[m] * invfac[m - a] * invfac[a]; tmp *= MInt::new((m - a) as i64).pow(2 * (n + 1 - a) as i64); tot += tmp; } println!("{}", MInt::new(m as i64).pow(2 * n as i64 + 1) - tot); }