use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::>() }; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /** * Segment Tree. This data structure is useful for fast folding on intervals of an array * whose elements are elements of monoid I. Note that constructing this tree requires the identity * element of I and the operation of I. * Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581) * AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001) * yukicoder No. 833 (https://yukicoder.me/submissions/703521) */ struct SegTree { n: usize, orign: usize, dat: Vec, op: BiOp, e: I, } impl SegTree where BiOp: Fn(I, I) -> I, I: Copy { pub fn new(n_: usize, op: BiOp, e: I) -> Self { let mut n = 1; while n < n_ { n *= 2; } // n is a power of 2 SegTree {n: n, orign: n_, dat: vec![e; 2 * n - 1], op: op, e: e} } /* ary[k] <- v */ pub fn update(&mut self, idx: usize, v: I) { debug_assert!(idx < self.orign); let mut k = idx + self.n - 1; self.dat[k] = v; while k > 0 { k = (k - 1) / 2; self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]); } } /* [a, b) (note: half-inclusive) * http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */ #[allow(unused)] pub fn query(&self, mut a: usize, mut b: usize) -> I { debug_assert!(a <= b); debug_assert!(b <= self.orign); let mut left = self.e; let mut right = self.e; a += self.n - 1; b += self.n - 1; while a < b { if (a & 1) == 0 { left = (self.op)(left, self.dat[a]); } if (b & 1) == 0 { right = (self.op)(self.dat[b - 1], right); } a = a / 2; b = (b - 1) / 2; } (self.op)(left, right) } } trait Change { fn chmax(&mut self, x: Self); fn chmin(&mut self, x: Self); } impl Change for T { fn chmax(&mut self, x: T) { if *self < x { *self = x; } } fn chmin(&mut self, x: T) { if *self > x { *self = x; } } } // (#inversion, #equal pairs) fn find_acc(a: &[i64]) -> (Vec, Vec) { let n = a.len(); let mut coo = a.to_vec(); coo.sort(); coo.dedup(); let m = coo.len(); let mut st = SegTree::new(m, |x, y| x + y, 0); let mut inv = vec![0; m + 1]; let mut eq = vec![0; m + 1]; for i in 0..n { let idx = coo.binary_search(&a[i]).unwrap(); inv[i + 1] = inv[i] + st.query(idx + 1, m); let val = st.query(idx, idx + 1); eq[i + 1] = eq[i] + val; st.update(idx, val + 1); } (inv, eq) } fn main() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););} input! { n: usize, a: [i64; n], } let (inv1, eq1) = find_acc(&a); let mut b = a; b.reverse(); for v in &mut b { *v *= -1; } let (mut inv2, mut eq2) = find_acc(&b); inv2.reverse(); eq2.reverse(); for i in 0..n { let whole = i as i64 * (n - i) as i64 - (eq1[n] - eq1[i] - eq2[i]); let rem = inv1[n] - inv1[i] - inv2[i]; puts!("{}\n", inv1[i] + inv2[i] + whole - rem); } }