import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import e, log,gcd class UnionFindVerSize(): def __init__(self, N): self._parent = [n for n in range(0, N)] self._size = [1] * N self.group = N def find_root(self, x): if self._parent[x] == x: return x self._parent[x] = self.find_root(self._parent[x]) stack = [x] while self._parent[stack[-1]]!=stack[-1]: stack.append(self._parent[stack[-1]]) for v in stack: self._parent[v] = stack[-1] return self._parent[x] def unite(self, x, y): gx = self.find_root(x) gy = self.find_root(y) if gx == gy: return self.group -= 1 if self._size[gx] < self._size[gy]: self._parent[gx] = gy self._size[gy] += self._size[gx] else: self._parent[gy] = gx self._size[gx] += self._size[gy] def get_size(self, x): return self._size[self.find_root(x)] def is_same_group(self, x, y): return self.find_root(x) == self.find_root(y) input = lambda :sys.stdin.readline() mi = lambda :map(int,input().split()) li = lambda :list(mi()) def check(N,M): uf = UnionFindVerSize(N) E = [] for i in range(N): for j in range(i+1,N): c = (i+1+j+1) % M E.append((c,i,j)) E.sort() cnt = [0 for i in range(M)] ans = 0 for c,i,j in E: if not uf.is_same_group(i,j): cnt[c] += 1 uf.unite(i,j) ans += c if uf.group==1: return ans #M = int(input()) #for n in range(M//2,3*M): #m = M #print(n,m,check(n,m)) for _ in range(int(input())): n,m = mi() if n < m: if m&1==0: rest_count = n-1-2*(n-(m//2)) res = n - (m//2) + (3+2+rest_count)*rest_count//2 else: rest_count = n-1-(2*(n-m//2)-1) res = n - (m//2) + (3+2+rest_count)*rest_count//2-1 else: res = m//2 print(res)