#define MOD_TYPE 1 #include using namespace std; #include //#include //#include //#include using namespace atcoder; #if 0 #include #include using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif #if 0 #include #include #include #include using namespace __gnu_pbds; using namespace __gnu_cxx; template using extset = tree, rb_tree_tag, tree_order_statistics_node_update>; #endif #if 1 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #pragma region Macros using ll = long long int; using ld = long double; using pii = pair; using pll = pair; using pld = pair; template using smaller_queue = priority_queue, greater>; #if MOD_TYPE == 1 constexpr ll MOD = ll(1e9 + 7); #else #if MOD_TYPE == 2 constexpr ll MOD = 998244353; #else constexpr ll MOD = 1000003; #endif #endif using mint = static_modint; constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; constexpr double PI = acos(-1.0); constexpr double EPS = 1e-11; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define possible(n) cout << ((n) ? "possible" : "impossible") << "\n" #define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; #define UNIQUE(v) v.erase(unique(all(v)), v.end()) struct io_init { io_init() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << setprecision(30) << setiosflags(ios::fixed); }; } io_init; template inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; } template inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template vector compress(vector &v) { vector val = v; sort(all(val)), val.erase(unique(all(val)), val.end()); for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin(); return val; } template constexpr istream &operator>>(istream &is, pair &p) noexcept { is >> p.first >> p.second; return is; } template constexpr ostream &operator<<(ostream &os, pair p) noexcept { os << p.first << " " << p.second; return os; } ostream &operator<<(ostream &os, mint m) { os << m.val(); return os; } ostream &operator<<(ostream &os, modint m) { os << m.val(); return os; } template constexpr istream &operator>>(istream &is, vector &v) noexcept { for (int i = 0; i < v.size(); i++) is >> v[i]; return is; } template constexpr ostream &operator<<(ostream &os, vector &v) noexcept { for (int i = 0; i < v.size(); i++) os << v[i] << (i + 1 == v.size() ? "" : " "); return os; } random_device seed_gen; mt19937_64 engine(seed_gen()); struct BiCoef { vector fact_, inv_, finv_; BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); for (int i = 2; i < n; i++) { fact_[i] = fact_[i - 1] * i; inv_[i] = -inv_[MOD % i] * (MOD / i); finv_[i] = finv_[i - 1] * inv_[i]; } } mint C(ll n, ll k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n - k]; } mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; } mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); } mint Ch1(ll n, ll k) const noexcept { if (n < 0 || k < 0) return 0; mint res = 0; for (int i = 0; i < n; i++) res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1); return res; } mint fact(ll n) const noexcept { if (n < 0) return 0; return fact_[n]; } mint inv(ll n) const noexcept { if (n < 0) return 0; return inv_[n]; } mint finv(ll n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; BiCoef bc(1000010); #pragma endregion // ------------------------------- namespace radix_heap { namespace internal { template class find_bucket_impl; template <> class find_bucket_impl { public: static inline constexpr size_t find_bucket(uint32_t x, uint32_t last) { return x == last ? 0 : 32 - __builtin_clz(x ^ last); } }; template <> class find_bucket_impl { public: static inline constexpr size_t find_bucket(uint64_t x, uint64_t last) { return x == last ? 0 : 64 - __builtin_clzll(x ^ last); } }; template inline constexpr size_t find_bucket(T x, T last) { return find_bucket_impl::find_bucket(x, last); } template class encoder_impl_integer; template class encoder_impl_integer { public: typedef KeyType key_type; typedef KeyType unsigned_key_type; inline static constexpr unsigned_key_type encode(key_type x) { return x; } inline static constexpr key_type decode(unsigned_key_type x) { return x; } }; template class encoder_impl_integer { public: typedef KeyType key_type; typedef typename std::make_unsigned::type unsigned_key_type; inline static constexpr unsigned_key_type encode(key_type x) { return static_cast(x) ^ (unsigned_key_type(1) << unsigned_key_type( std::numeric_limits::digits - 1)); } inline static constexpr key_type decode(unsigned_key_type x) { return static_cast( x ^ (unsigned_key_type(1) << (std::numeric_limits::digits - 1))); } }; template class encoder_impl_decimal { public: typedef KeyType key_type; typedef UnsignedKeyType unsigned_key_type; inline static constexpr unsigned_key_type encode(key_type x) { return raw_cast(x) ^ ((-(raw_cast(x) >> (std::numeric_limits::digits - 1))) | (unsigned_key_type(1) << (std::numeric_limits::digits - 1))); } inline static constexpr key_type decode(unsigned_key_type x) { return raw_cast( x ^ (((x >> (std::numeric_limits::digits - 1)) - 1) | (unsigned_key_type(1) << (std::numeric_limits::digits - 1)))); } private: template union raw_cast { public: constexpr raw_cast(T t) : t_(t) {} operator U() const { return u_; } private: T t_; U u_; }; }; template class encoder : public encoder_impl_integer::value> {}; template <> class encoder : public encoder_impl_decimal {}; template <> class encoder : public encoder_impl_decimal {}; } // namespace internal template > class radix_heap { public: typedef KeyType key_type; typedef EncoderType encoder_type; typedef typename encoder_type::unsigned_key_type unsigned_key_type; radix_heap() : size_(0), last_(), buckets_() { buckets_min_.fill(std::numeric_limits::max()); } void push(key_type key) { const unsigned_key_type x = encoder_type::encode(key); assert(last_ <= x); ++size_; const size_t k = internal::find_bucket(x, last_); buckets_[k].emplace_back(x); buckets_min_[k] = std::min(buckets_min_[k], x); } key_type top() { pull(); return encoder_type::decode(last_); } void pop() { pull(); buckets_[0].pop_back(); --size_; } size_t size() const { return size_; } bool empty() const { return size_ == 0; } void clear() { size_ = 0; last_ = key_type(); for (auto &b : buckets_) b.clear(); buckets_min_.fill(std::numeric_limits::max()); } void swap(radix_heap &a) { std::swap(size_, a.size_); std::swap(last_, a.last_); buckets_.swap(a.buckets_); buckets_min_.swap(a.buckets_min_); } private: size_t size_; unsigned_key_type last_; std::array, std::numeric_limits::digits + 1> buckets_; std::array::digits + 1> buckets_min_; void pull() { assert(size_ > 0); if (!buckets_[0].empty()) return; size_t i; for (i = 1; buckets_[i].empty(); ++i) ; last_ = buckets_min_[i]; for (unsigned_key_type x : buckets_[i]) { const size_t k = internal::find_bucket(x, last_); buckets_[k].emplace_back(x); buckets_min_[k] = std::min(buckets_min_[k], x); } buckets_[i].clear(); buckets_min_[i] = std::numeric_limits::max(); } }; template > class pair_radix_heap { public: typedef KeyType key_type; typedef ValueType value_type; typedef EncoderType encoder_type; typedef typename encoder_type::unsigned_key_type unsigned_key_type; pair_radix_heap() : size_(0), last_(), buckets_() { buckets_min_.fill(std::numeric_limits::max()); } void push(key_type key, const value_type &value) { const unsigned_key_type x = encoder_type::encode(key); assert(last_ <= x); ++size_; const size_t k = internal::find_bucket(x, last_); buckets_[k].emplace_back(x, value); buckets_min_[k] = std::min(buckets_min_[k], x); } void push(key_type key, value_type &&value) { const unsigned_key_type x = encoder_type::encode(key); assert(last_ <= x); ++size_; const size_t k = internal::find_bucket(x, last_); buckets_[k].emplace_back(x, std::move(value)); buckets_min_[k] = std::min(buckets_min_[k], x); } template void emplace(key_type key, Args &&...args) { const unsigned_key_type x = encoder_type::encode(key); assert(last_ <= x); ++size_; const size_t k = internal::find_bucket(x, last_); buckets_[k].emplace_back(std::piecewise_construct, std::forward_as_tuple(x), std::forward_as_tuple(args...)); buckets_min_[k] = std::min(buckets_min_[k], x); } key_type top_key() { pull(); return encoder_type::decode(last_); } value_type &top_value() { pull(); return buckets_[0].back().second; } void pop() { pull(); buckets_[0].pop_back(); --size_; } size_t size() const { return size_; } bool empty() const { return size_ == 0; } void clear() { size_ = 0; last_ = key_type(); for (auto &b : buckets_) b.clear(); buckets_min_.fill(std::numeric_limits::max()); } void swap(pair_radix_heap &a) { std::swap(size_, a.size_); std::swap(last_, a.last_); buckets_.swap(a.buckets_); buckets_min_.swap(a.buckets_min_); } private: size_t size_; unsigned_key_type last_; std::array>, std::numeric_limits::digits + 1> buckets_; std::array::digits + 1> buckets_min_; void pull() { assert(size_ > 0); if (!buckets_[0].empty()) return; size_t i; for (i = 1; buckets_[i].empty(); ++i) ; last_ = buckets_min_[i]; for (size_t j = 0; j < buckets_[i].size(); ++j) { const unsigned_key_type x = buckets_[i][j].first; const size_t k = internal::find_bucket(x, last_); buckets_[k].emplace_back(std::move(buckets_[i][j])); buckets_min_[k] = std::min(buckets_min_[k], x); } buckets_[i].clear(); buckets_min_[i] = std::numeric_limits::max(); } }; } // namespace radix_heap int d[10000 * (1 << 12)]; vector> E[10000]; int r[20000]; int c[20000]; void solve() { Fill(d, INF); int n, m, k; cin >> n >> m >> k; Fill(r, -1); rep(i, k) { int t; cin >> t, t--; r[t] = i; } rep(i, m) { short a, b; cin >> a >> b >> c[i]; a--, b--; E[a].push_back({b, i}); E[b].push_back({a, i}); } radix_heap::pair_radix_heap que; que.push(0, 0); d[0] = 0; int di, num, i, msk, msk2, num2; const int MSK = (1 << k) - 1; while (!que.empty()) { di = que.top_key(); num = que.top_value(); que.pop(); if (d[num] < di) continue; i = num >> k; msk = num & MSK; for (auto [j, ei] : E[i]) { msk2 = msk; if (r[ei] != -1) msk2 |= (1 << r[ei]); num2 = (j << k) | msk2; if (chmin(d[num2], d[num] + c[ei])) { que.push(d[num2], num2); } } } cout << d[n * (1 << k) - 1] << "\n"; } int main() { solve(); }