#include "bits/stdc++.h" #include #include #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define SZ(x) ((lint)(x).size()) #define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i=i##_begin_;--i) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) #define endk '\n' using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef long double ld; typedef pair plint; typedef pair pld; struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(10); }; } fast_ios_; template auto add = [](T a, T b) -> T { return a + b; }; template auto mul = [](T a, T b) -> T { return a * b; }; template auto f_max = [](T a, T b) -> T { return max(a, b); }; template auto f_min = [](T a, T b) -> T { return min(a, b); }; template using V = vector; using Vl = V; using VVl = V; using VVVl = V>; template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) { for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : ""); return os; } template< typename T >istream& operator>>(istream& is, vector< T >& v) { for (T& in : v) is >> in; return is; } template bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } template T div_floor(T a, T b) { if (b < 0) a *= -1, b *= -1; return a >= 0 ? a / b : (a + 1) / b - 1; } template T div_ceil(T a, T b) { if (b < 0) a *= -1, b *= -1; return a > 0 ? (a - 1) / b + 1 : a / b; } template struct rec { F f; rec(F&& f_) : f(std::forward(f_)) {} template auto operator()(Args &&... args) const { return f(*this, std::forward(args)...); } }; lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); } lint digit(lint a) { return (lint)log10(a); } lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); } lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); } bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a >= limit / b; } // a * b > c => true void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); } const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 2e18; lint dx[8] = { 0, -1, 0, 1, 1, -1, 1, -1 }, dy[8] = { -1, 0, 1, 0, -1, -1, 1, 1 }; bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; } struct Edge { lint from, to; lint cost; Edge() { } Edge(lint u, lint v, lint c) { cost = c; from = u; to = v; } bool operator<(const Edge& e) const { return cost < e.cost; } }; struct WeightedEdge { lint to; lint cost; WeightedEdge(lint v, lint c = 1) { to = v; cost = c; } bool operator<(const WeightedEdge& e) const { return cost < e.cost; } }; using WeightedGraph = V>; typedef pair tlint; typedef pair pld; typedef pair qlint; typedef pair valstr; typedef pair valv; template< typename G > struct StronglyConnectedComponents { const G& g; VVl gg, rg; vector< int > comp, order, used; StronglyConnectedComponents(G& g) : g(g), gg(g.size()), rg(g.size()), comp(g.size(), -1), used(g.size()) { for (int i = 0; i < g.size(); i++) { for (auto e : g[i]) { gg[i].emplace_back((int)e); rg[(int)e].emplace_back(i); } } } int operator[](int k) { return comp[k]; } void dfs(int idx) { if (used[idx]) return; used[idx] = true; for (int to : gg[idx]) dfs(to); order.push_back(idx); } void rdfs(int idx, int cnt) { if (comp[idx] != -1) return; comp[idx] = cnt; for (int to : rg[idx]) rdfs(to, cnt); } void build(VVl& t) { for (int i = 0; i < gg.size(); i++) dfs(i); reverse(begin(order), end(order)); int ptr = 0; for (int i : order) if (comp[i] == -1) rdfs(i, ptr), ptr++; t.resize(ptr); for (int i = 0; i < g.size(); i++) { for (auto& to : g[i]) { int x = comp[i], y = comp[to]; if (x == y) continue; t[x].push_back(y); } } } }; struct UnionFind { public: UnionFind() : _n(0) {} UnionFind(int n) : _n(n), parent_or_size(n, -1) {} int merge(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); int x = leader(a), y = leader(b); if (x == y) return x; if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y); if (used_count) { if (count_in_set[x].size() < count_in_set[y].size()) { std::swap(count_in_set[x], count_in_set[y]); } for (auto p : count_in_set[y]) { count_in_set[x][p.first] += p.second; } } if (set_operate) { root_values[x] = f(root_values[y], root_values[x]); } parent_or_size[x] += parent_or_size[y]; parent_or_size[y] = x; return x; } bool same(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); return leader(a) == leader(b); } int leader(int a) { assert(0 <= a && a < _n); if (parent_or_size[a] < 0) return a; return parent_or_size[a] = leader(parent_or_size[a]); } int size(int a) { assert(0 <= a && a < _n); return -parent_or_size[leader(a)]; } std::vector> groups() { std::vector leader_buf(_n), group_size(_n); for (int i = 0; i < _n; i++) { leader_buf[i] = leader(i); group_size[leader_buf[i]]++; } std::vector> result(_n); for (int i = 0; i < _n; i++) { result[i].reserve(group_size[i]); } for (int i = 0; i < _n; i++) { result[leader_buf[i]].push_back(i); } result.erase( std::remove_if(result.begin(), result.end(), [&](const std::vector& v) { return v.empty(); }), result.end()); return result; } //update root calc //set by set operations void set_operate_and_value(std::vector array, function _f) { f = _f; root_values = array; set_operate = true; } lint get_set_value(int a) { return root_values[leader(a)]; } //regist count void regist_count(int a, int label) { if (!used_count) { used_count = true; count_in_set.assign(_n, std::map()); } count_in_set[leader(a)][label]++; } int get_count(int a, int label) { if (!used_count) return -1; return count_in_set[leader(a)][label]; } private: int _n; std::vector parent_or_size; std::vector> count_in_set; bool used_count = false; std::vector root_values; function f; bool set_operate = false; }; int main() { lint N, M; cin >> N >> M; VVl to(N); REP(i, M) { lint u, v; cin >> u >> v; u--; v--; to[u].push_back(v); } StronglyConnectedComponents g(to); VVl res; g.build(res); set st; REP(i, N) st.insert(g[i]); V ed; UnionFind tree(SZ(res)); REP(i, SZ(res)) { for (lint v : res[i]) { ed.push_back({ i, v }); tree.merge(i, v); } } map> med; REP(i, SZ(ed)) { med[tree.leader(ed[i].first)].push_back(ed[i]); } lint ans = 0; set used; VVl vers(SZ(res)); REP(i, SZ(res)) vers[tree.leader(i)].push_back(i); REP(i, SZ(res)) { lint _p = tree.leader(i); if (used.count(_p)) continue; used.insert(_p); lint sz = SZ(vers[_p]); if (sz == 1) continue; sort(ALL(vers[_p])); map fx; for (lint v : vers[_p]) fx[v] = SZ(fx); VVl nxt(sz); Vl deg(sz); for (plint p : med[_p]) { nxt[fx[p.first]].push_back(fx[p.second]); deg[fx[p.second]]++; } queue que; REP(j, sz) if (deg[j] == 0) que.push(j); Vl res; while (!que.empty()) { lint curr = que.front(); que.pop(); res.push_back(curr); for (lint v : nxt[curr]) { deg[v]--; if (deg[v] == 0) que.push(v); } } Vl dp(sz); for (lint v : res) { for (lint _n : nxt[v]) { chmax(dp[_n], dp[v] + 1); } } ans += sz - *max_element(ALL(dp)) - 1; } ans += SZ(used); if (SZ(res) == 1) ans = 0; cout << ans << endk; }