class Dijkstra(): class Edge(): def __init__(self, _to, _cost): self.to = _to self.cost = _cost def __init__(self, V): self.G = [[] for i in range(V)] self._E = 0 self._V = V @property def E(self): return self._E @property def V(self): return self._V def add_edge(self, _from, _to, _cost): self.G[_from].append(self.Edge(_to, _cost)) self._E += 1 def shortest_path(self, s): import heapq que = [] d = [10**15] * self.V d[s] = 0 heapq.heappush(que, (0, s)) while len(que) != 0: cost, v = heapq.heappop(que) if d[v] < cost: continue for i in range(len(self.G[v])): e = self.G[v][i] if d[e.to] > d[v] + e.cost: d[e.to] = d[v] + e.cost heapq.heappush(que, (d[e.to], e.to)) return d import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import log,gcd input = lambda :sys.stdin.readline() mi = lambda :map(int,input().split()) li = lambda :list(mi()) def solve(N,M,E,R,B): G = Dijkstra(2*N) edge = [[] for i in range(N)] for u,v in E: u,v = u-1,v-1 G.add_edge(2*u,2*v+1,max(R[v]-B[v],0)) G.add_edge(2*u+1,2*v,max(B[v]-R[v],0)) G.add_edge(2*v,2*u+1,max(R[u]-B[u],0)) G.add_edge(2*v+1,2*u,max(B[u]-R[u],0)) edge[u].append(v) edge[v].append(u) color = [-1] * N color[0] = 0 stack = [0] flag = True while stack: v = stack.pop() for nv in edge[v]: if color[nv]==-1: color[nv] = 1 - color[v] stack.append(nv) else: if color[nv] != 1 - color[v]: flag = False if flag: x,y = 0,0 for i in range(N): if color[i]: x += R[i]; y += B[i] else: y += R[i]; x += B[i] return max(x,y) res = sum(max(R[i],B[i]) for i in range(N)) minus = res for i in range(N): t0 = G.shortest_path(2*i)[2*i+1] t1 = G.shortest_path(2*i+1)[2*i] minus = min(minus,t0,t1) return res-minus N,M = mi() E = [tuple(mi()) for i in range(M)] R = li() B = li() print(solve(N,M,E,R,B))