// ---------- begin modint ---------- use std::marker::*; use std::ops::*; pub trait Modulo { fn modulo() -> u32; } pub struct ConstantModulo; impl Modulo for ConstantModulo<{ M }> { fn modulo() -> u32 { M } } pub struct ModInt(u32, PhantomData); impl Clone for ModInt { fn clone(&self) -> Self { Self::new_unchecked(self.0) } } impl Copy for ModInt {} impl Add for ModInt { type Output = ModInt; fn add(self, rhs: Self) -> Self::Output { let mut v = self.0 + rhs.0; if v >= T::modulo() { v -= T::modulo(); } Self::new_unchecked(v) } } impl AddAssign for ModInt { fn add_assign(&mut self, rhs: Self) { *self = *self + rhs; } } impl Sub for ModInt { type Output = ModInt; fn sub(self, rhs: Self) -> Self::Output { let mut v = self.0 - rhs.0; if self.0 < rhs.0 { v += T::modulo(); } Self::new_unchecked(v) } } impl SubAssign for ModInt { fn sub_assign(&mut self, rhs: Self) { *self = *self - rhs; } } impl Mul for ModInt { type Output = ModInt; fn mul(self, rhs: Self) -> Self::Output { let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64; Self::new_unchecked(v as u32) } } impl MulAssign for ModInt { fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs; } } impl Neg for ModInt { type Output = ModInt; fn neg(self) -> Self::Output { if self.is_zero() { Self::zero() } else { Self::new_unchecked(T::modulo() - self.0) } } } impl std::fmt::Display for ModInt { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl std::fmt::Debug for ModInt { fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result { write!(f, "{}", self.0) } } impl Default for ModInt { fn default() -> Self { Self::zero() } } impl std::str::FromStr for ModInt { type Err = std::num::ParseIntError; fn from_str(s: &str) -> Result { let val = s.parse::()?; Ok(ModInt::new(val)) } } impl From for ModInt { fn from(val: usize) -> ModInt { ModInt::new_unchecked((val % T::modulo() as usize) as u32) } } impl From for ModInt { fn from(val: u64) -> ModInt { ModInt::new_unchecked((val % T::modulo() as u64) as u32) } } impl From for ModInt { fn from(val: i64) -> ModInt { let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32; if v >= T::modulo() { v -= T::modulo(); } ModInt::new_unchecked(v) } } impl ModInt { pub fn new_unchecked(n: u32) -> Self { ModInt(n, PhantomData) } pub fn zero() -> Self { ModInt::new_unchecked(0) } pub fn one() -> Self { ModInt::new_unchecked(1) } pub fn is_zero(&self) -> bool { self.0 == 0 } } impl ModInt { pub fn new(d: u32) -> Self { ModInt::new_unchecked(d % T::modulo()) } pub fn pow(&self, mut n: u64) -> Self { let mut t = Self::one(); let mut s = *self; while n > 0 { if n & 1 == 1 { t *= s; } s *= s; n >>= 1; } t } pub fn inv(&self) -> Self { assert!(!self.is_zero()); self.pow(T::modulo() as u64 - 2) } pub fn fact(n: usize) -> Self { (1..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn perm(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a)) } pub fn binom(n: usize, k: usize) -> Self { if k > n { return Self::zero(); } let k = k.min(n - k); let mut nu = Self::one(); let mut de = Self::one(); for i in 0..k { nu *= Self::from(n - i); de *= Self::from(i + 1); } nu * de.inv() } } // ---------- end modint ---------- // ---------- begin precalc ---------- pub struct Precalc { fact: Vec>, ifact: Vec>, inv: Vec>, } impl Precalc { pub fn new(n: usize) -> Precalc { let mut inv = vec![ModInt::one(); n + 1]; let mut fact = vec![ModInt::one(); n + 1]; let mut ifact = vec![ModInt::one(); n + 1]; for i in 2..=n { fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32); } ifact[n] = fact[n].inv(); if n > 0 { inv[n] = ifact[n] * fact[n - 1]; } for i in (1..n).rev() { ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32); inv[i] = ifact[i] * fact[i - 1]; } Precalc { fact, ifact, inv } } pub fn inv(&self, n: usize) -> ModInt { assert!(n > 0); self.inv[n] } pub fn fact(&self, n: usize) -> ModInt { self.fact[n] } pub fn ifact(&self, n: usize) -> ModInt { self.ifact[n] } pub fn perm(&self, n: usize, k: usize) -> ModInt { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[n - k] } pub fn binom(&self, n: usize, k: usize) -> ModInt { if k > n { return ModInt::zero(); } self.fact[n] * self.ifact[k] * self.ifact[n - k] } } // ---------- end precalc ---------- type M = ModInt>; fn read() -> (u64, u64, u64) { let mut s = String::new(); use std::io::Read; std::io::stdin().read_to_string(&mut s).unwrap(); let a = s .trim() .split_whitespace() .flat_map(|s| s.parse()) .collect::>(); (a[0], a[1], a[2]) } fn main() { let (n, m, k) = read(); let k = k as usize; let pc = Precalc::new(k); let mut ans = M::zero(); let mut sign = M::one(); for i in (1..=k).rev() { let way = if n == 1 { let k = M::from(i); k * (k - M::one()).pow(m - 1) } else if n == 2 { let k = M::from(i); k * (k - M::one()) * (k * k - M::new(3) * k + M::new(3)).pow(m - 1) } else { type Mat = [[M; 2]; 2]; let mul = |a: &Mat, b: &Mat| -> Mat { let mut c = Mat::default(); for (c, a) in c.iter_mut().zip(a) { for (a, b) in a.iter().zip(b) { for (c, b) in c.iter_mut().zip(b) { *c += *a * *b; } } } c }; let k = M::from(i); let mut r = Mat::default(); r[0][0] = [1i64, -6, 14, -13] .iter() .fold(M::zero(), |s, a| s * k + M::from(*a)); r[0][1] = [1i64, -6, 13, -10] .iter() .fold(M::zero(), |s, a| s * k + M::from(*a)); r[1][0] = [1i64, -4, 5] .iter() .fold(M::zero(), |s, a| s * k + M::from(*a)); r[1][1] = [1i64, -3, 3] .iter() .fold(M::zero(), |s, a| s * k + M::from(*a)); let mut t = [[M::one(), M::zero()], [M::zero(), M::one()]]; let mut m = m - 1; while m > 0 { if m & 1 == 1 { t = mul(&t, &r); } r = mul(&r, &r); m >>= 1; } let a = [ k * k * k - M::new(3) * k * k + M::new(2) * k, k * (k - M::one()), ]; t.iter() .map(|t| t.iter().zip(a.iter())) .flatten() .fold(M::zero(), |s, p| s + *p.0 * *p.1) }; ans += sign * pc.binom(k, i) * way; sign = -sign; } println!("{}", ans); }