#include #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define rrep(i, n) for (int i = (int)(n - 1); i >= 0; i--) #define all(x) (x).begin(), (x).end() #define sz(x) int(x.size()) #define yn(joken) cout<<((joken) ? "Yes" : "No")<; using vl = vector; using vs = vector; using vc = vector; using vd = vector; using vvi = vector>; using vvl = vector>; const int INF = 1e9; const ll LINF = 1e18; template bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } template vector make_vec(size_t a) { return vector(a); } template auto make_vec(size_t a, Ts... ts) { return vector(ts...))>(a, make_vec(ts...)); } template istream& operator>>(istream& is, vector& v) { for (int i = 0; i < int(v.size()); i++) { is >> v[i]; } return is; } template ostream& operator<<(ostream& os, const vector& v) { for (int i = 0; i < int(v.size()); i++) { os << v[i]; if (i < int(v.size()) - 1) os << ' '; } return os; } template struct Edge{ int from, to; T cost; int idx; Edge() = default; Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {} operator int() const { return to; } }; template struct Graph{ vector>> g; int es; Graph() = default; explicit Graph(int n) : g(n), es(0) {} size_t size() const{ return g.size(); } void add_directed_edge(int from, int to, T cost = 1){ g[from].emplace_back(from, to, cost, es++); } void add_edge(int from, int to, T cost = 1){ g[from].emplace_back(from, to, cost, es); g[to].emplace_back(to, from, cost, es++); } void read(int M, int padding = -1, bool weighted = false, bool directed = false){ for (int i = 0; i < M; i++){ int a, b; cin >> a >> b; a += padding; b += padding; T c = T(1); if (weighted) cin >> c; if (directed) add_directed_edge(a, b, c); else add_edge(a, b, c); } } inline vector> &operator[](const int &k){ return g[k]; } inline const vector> &operator[](const int &k) const{ return g[k]; } }; template using Edges = vector>; // dijkstra(g,start) とする. 返り値は以下の3つ. // startからの最短距離の配列 dist // 最短経路でその頂点の前に通る頂点の配列 from (startおよび到達不能頂点では-1) // 最短経路でその頂点の前に通る辺の辺番号の配列 idx (startおよび到達不能頂点では-1) template struct ShortestPath{ vector dist; vector from, id; }; template ShortestPath dijkstra(const Graph &g, int s){ const auto INF = numeric_limits::max(); vector dist(g.size(), INF); vector from(g.size(), -1), id(g.size(), -1); using Pi = pair; priority_queue, greater<>> que; dist[s] = 0; que.emplace(dist[s], s); while (!que.empty()){ T cost; int idx; tie(cost, idx) = que.top(); que.pop(); if (dist[idx] < cost) continue; for (auto &e : g[idx]){ auto next_cost = cost + e.cost; if (dist[e.to] <= next_cost) continue; dist[e.to] = next_cost; from[e.to] = idx; id[e.to] = e.idx; que.emplace(dist[e.to], e.to); } } return {dist, from, id}; } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); int N; cin>>N; Graph g(N+1); rep(i,N){ int x=__builtin_popcount(i+1); if(i+1-x>=1) g.add_directed_edge(i+1,i+1-x,1); if(i+1+x<=N) g.add_directed_edge(i+1,i+1+x,1); } auto ret=dijkstra(g,1); cout<<(ret.dist[N]==numeric_limits::max() ? -1 : ret.dist[N]+1)<