#define PROBLEM "https://yukicoder.me/problems/no/1069" #define ERROR "1e-6" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LEN(x) (long long)(x.size()) #define FOR(i, a, n) for(int i=(a);i<(n); ++i) #define FOE(i, a) for(auto i : a) #define ALL(c) (c).begin(), (c).end() #define RALL(c) (c).rbegin(), (c).rend() #define SUM(x) std::accumulate(ALL(x), 0LL) #define MIN(v) *std::min_element(v.begin(), v.end()) #define MAX(v) *std::max_element(v.begin(), v.end()) #define EXIST(v, x) (std::find(v.begin(), v.end(), x) != v.end()) #define BIT_COUNT32(bit) (__builtin_popcount(bit)) #define BIT_COUNT64(bit) (__builtin_popcountll(bit)) typedef long long LL; template std::vector make_v(size_t a){return std::vector(a);} template auto make_v(size_t a, Ts... ts){ return std::vector(ts...))>(a,make_v(ts...));} // C++14 template typename std::enable_if::value==0>::type fill_v(T &t,const V &v){t=v;} template typename std::enable_if::value!=0>::type fill_v(T &t,const V &v){for(auto &e:t) fill_v(e,v);} template inline T ceil(T a, T b) { return (a + b - 1) / b; } void print() { std::cout << std::endl; } template void print(Head&& head, Tail&&... tail) { std::cout << head; if (sizeof...(tail) != 0) {std::cout << " ";} print(std::forward(tail)...); } template void print(std::vector &v) {for (auto& a : v) { std::cout << a; if (&a != &v.back()) {std::cout << " ";} }std::cout << std::endl;} template void print(std::vector> &vv) { for (auto& v : vv) { print(v); }} void debug() { std::cerr << std::endl; } template void debug(Head&& head, Tail&&... tail) { std::cerr << head; if (sizeof...(tail) != 0) {std::cerr << " ";} print(std::forward(tail)...); } template void debug(std::vector &v) {for (auto& a : v) { std::cerr << a; if (&a != &v.back()) {std::cerr << " ";} }std::cerr << std::endl;} template void debug(std::vector> &vv) { for (auto& v : vv) { print(v); }} inline bool inside(long long y, long long x, long long H, long long W) {return 0 <= y and y < H and 0 <= x and x < W; } template inline double euclidean_distance(T y1, T x1, T y2, T x2) { return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)); } template inline T manhattan_distance(T y1, T x1, T y2, T x2) { return abs(x1 - x2) + abs(y1 - y2); } template T &chmin(T &a, const T &b) { return a = std::min(a, b); } template T &chmax(T &a, const T &b) { return a = std::max(a, b); } bool is_bit_on(const unsigned long long bit, const unsigned int i) { return (bit >> i) & 1u; } unsigned long long bit_set(const unsigned long long bit, const unsigned int i, const unsigned int b) { assert(b == 0 or b == 1); if (b == 0) { return bit & ~(1ull << i); } else {return bit | (1ull << i); } } template inline std::vector unique(std::vector v) { sort(v.begin(), v.end()); v.erase(unique(v.begin(), v.end()), v.end()); return v; } // 初項s交差d長さnの数列の和 long long sum_of_arithmetic_progression(long long s, long long d, long long n) { return n * (2 * s + (n - 1) * d) / 2; } // xが2の階乗かどうか判定 bool is_power_of_two(long long x) { return !(x & (x - 1)); } long long gcd(long long a, long long b) { if (b == 0) { return a; } return gcd(b, a % b); } long long gcd(std::vector &v) { long long ans = v[0]; for (int i = 1; i < (int) v.size(); ++i) { ans = gcd(ans, v[i]); } return ans; } long long lcm(long long a, long long b) { long long g = gcd(a, b); return a / g * b; } const int INF = 1u << 30u; // 1,073,741,824 const long long LINF = 1ull << 60u; const double EPS = 1e-9; const long double PI = acos(-1.0); const std::vector dy2 = {0, 1}, dx2 = {1, 0}; // 右,下 const std::vector dy4 = {0, 1, 0, -1}, dx4 = {1, 0, -1, 0}; const std::vector dy6 = {0, -1, 0, 1, 1, 1}, dx6 = {1, 0, -1, 0, 1, -1}; const std::vector dy8 = {0, -1, 0, 1, 1, -1, -1, 1}, dx8 = {1, 0, -1, 0, 1, 1, -1, -1}; template class Edge { public: const int u; const int v; const T distance; Edge(int u, int v, T distance) : u(u), v(v), distance(distance) { } }; // Yen's algorithm // 最短経路をK個見つける // O(KN * SP) template class KShortestPath { public: const int num_nodes; const int K; private: std::vector> graph; std::vector> edges; std::vector distance; std::vector> A; std::priority_queue>, std::vector>>, std::greater>>> B; // deviation path std::vector removed_edge; public: KShortestPath(const int num_nodes, const int K) : num_nodes(num_nodes), K(K) { this->graph.resize(num_nodes); } void add_directed_edge(const int u, const int v, const T w) { this->graph[u].emplace_back(this->edges.size()); this->edges.emplace_back(Edge(u, v, w)); } Edge get_edge(const int edge_no) const { return this->edges[edge_no]; } // 0-index T k_shortest_path_distance(const int k) const { assert(k < K); return this->distance[k]; } // 0-index std::vector k_shortest_path(const int k) const { assert(k < K); return this->A[k]; } int num_shortest_path() const { return A.size(); } void build(const int s, const int t) { assert(s < num_nodes); assert(t < num_nodes); this->removed_edge.resize(this->edges.size()); // 1つ目の最短経路を見つける { auto[dist, path] = this->dijkstra(s, t, std::unordered_set()); if (path.empty()) { return; } this->A.emplace_back(path); this->distance.emplace_back(dist); } while (int(A.size()) < this->K) { const auto &last_path = this->A.back(); std::vector spur_root; T now_distance = 0; std::unordered_set path_rem; std::unordered_set used_node; for (int i = 0; i < int(last_path.size()); ++i) { int edge_idx = last_path[i]; const auto &edge = this->edges[edge_idx]; const int spur_node = edge.u; used_node.insert(spur_node); this->removed_edge[last_path[i]] = true; path_rem.insert(last_path[i]); std::unordered_set rem; for (const auto &path_k : this->A) { if (int(path_k.size()) < i) { continue; } bool same = true; for (int j = 0; j < int(spur_root.size()); ++j) { same &= (path_k[j] == spur_root[j]); if (not same) { break; } } if (same) { this->removed_edge[path_k[i]] = true; rem.insert(path_k[i]); } } auto [dist, suf_path] = this->dijkstra(spur_node, t, used_node); for (auto a : rem) { if (path_rem.find(a) == path_rem.end()) { this->removed_edge[a] = false; } } // spur_node -> t へのパスがみつからなかった if (suf_path.empty()) { spur_root.push_back(edge_idx); now_distance += edge.distance; continue; } std::vector path = spur_root; path.insert(path.end(), suf_path.begin(), suf_path.end()); this->B.push({now_distance + dist, path}); spur_root.push_back(edge_idx); now_distance += edge.distance; } while (not path_rem.empty()) { this->removed_edge[*path_rem.begin()] = false; path_rem.erase(path_rem.begin()); } if (B.empty()) { break; } while (not B.empty()) { if (A.back() == this->B.top().second) { B.pop(); continue; } this->A.emplace_back(this->B.top().second); this->distance.emplace_back(B.top().first); B.pop(); break; } } } private: // 負辺がないとき用 std::pair> dijkstra(const int start, const int end, const std::unordered_set &used_node) const { //[(最短距離, node番号)]のque(距離が近い順にとりだす) std::priority_queue, std::vector>, std::greater>> que; que.push({0, start}); std::vector> prev(this->num_nodes); // 経路復元用 std::vector distance(this->num_nodes, std::numeric_limits::max() / 3); // startからの距離 std::vector used(this->num_nodes); distance[start] = 0; while (not que.empty()) { const auto [now_dist, u] = que.top(); que.pop(); if (used[u]) { continue; } used[u] = true; for (const auto edge_idx : this->graph[u]) { if (this->removed_edge[edge_idx]) { continue; } const auto edge = this->edges[edge_idx]; const auto v = edge.v; const auto new_dist = now_dist + edge.distance; if (used_node.find(v) != used_node.end()) { continue; } if (new_dist < distance[v]) { prev[v] = {u, edge_idx}; distance[v] = new_dist; que.push({new_dist, v}); } } } // t にたどり着けなかった if (not used[end]) { return {-1, {}}; } std::vector path; int now = end; while (now != start) { path.emplace_back(prev[now].second); now = prev[now].first; } reverse(path.begin(), path.end()); return {distance[end], path}; } }; using namespace std; int main() { int N, M, K, X, Y; cin >> N >> M >> K; cin >> X >> Y; X--; Y--; vector P(N), Q(N); for (int i = 0; i < N; ++i) { cin >> P[i] >> Q[i]; } KShortestPath ksp(N, K); for (int i = 0; i < M; ++i) { int a, b; cin >> a >> b; a--; b--; auto d = sqrt((P[a] - P[b]) * (P[a] - P[b]) + (Q[a] - Q[b]) * (Q[a] - Q[b])); ksp.add_directed_edge(a, b, d); ksp.add_directed_edge(b, a, d); } ksp.build(X, Y); for (int i = 0; i < K; ++i) { if (i < ksp.num_shortest_path()) { cout << fixed << setprecision(5) << ksp.k_shortest_path_distance(i) << endl; // FOE(r, ksp.k_shortest_path(i)) { // cout << ksp.get_edge(r).u << "->" << ksp.get_edge(r).v << ", "; // } // cout << endl; } else { cout << -1 << endl; } } return 0; }