import math class SegTree: DEFAULT = { 'min': 1 << 60, 'max': -(1 << 60), 'sum': 0, 'prd': 1, 'gcd': 0, 'lmc': 1, '^': 0, '&': (1 << 60) - 1, '|': 0, } FUNC = { 'min': min, 'max': max, 'sum': (lambda x, y: x + y), 'prd': (lambda x, y: x * y), 'gcd': math.gcd, 'lmc': (lambda x, y: (x * y) // math.gcd(x, y)), '^': (lambda x, y: x ^ y), '&': (lambda x, y: x & y), '|': (lambda x, y: x | y), } def __init__(self, ls, mode='min', func=None, default=None): """ 要素ls, 関数mode (min,max,sum,prd(product),gcd,lmc,^,&,|) func,defaultを指定すれば任意の関数、単位元での計算が可能 """ N = len(ls) if default == None: self.default = self.DEFAULT[mode] else: self.default = default if func == None: self.func = self.FUNC[mode] else: self.func = func self.N = N self.K = (N - 1).bit_length() self.N2 = 1 << self.K self.dat = [self.default] * (2**(self.K + 1)) for i in range(self.N): # 葉の構築 self.dat[self.N2 + i] = ls[i] self.build() def build(self): for j in range(self.N2 - 1, -1, -1): self.dat[j] = self.func(self.dat[j << 1], self.dat[j << 1 | 1]) # 親が持つ条件 def leafvalue(self, x): # リストのx番目の値 return self.dat[x + self.N2] def update(self, x, y): # index(x)をyに変更 i = x + self.N2 self.dat[i] = y while i > 0: # 親の値を変更 i >>= 1 self.dat[i] = self.func(self.dat[i << 1], self.dat[i << 1 | 1]) return def query(self, L, R): # [L,R)の区間取得 L += self.N2 R += self.N2 vL = self.default vR = self.default while L < R: if L & 1: vL = self.func(vL, self.dat[L]) L += 1 if R & 1: R -= 1 vR = self.func(self.dat[R], vR) L >>= 1 R >>= 1 return self.func(vL, vR) def __iter__(self): for i in range(self.N): yield self[i] def __getitem__(self, x): return self.leafvalue(x) def __setitem__(self, x, val): return self.update(x, val) N,D,K = map(int,input().split()) lsx = [int(input()) for i in range(N)] SG = SegTree(lsx) m = 0 ind = 0 for i in range(1,N): mi = SG.query(max(0,i-D),i) c = lsx[i]-mi if m < c: m = c ind = i if m == 0: print(0) exit() st = 0 for i in range(max(0,ind-D),ind,1): if lsx[i] == lsx[ind]-m: st = i break print(m*K) print(st,ind)