def rerooting(n, edges, unit, merge, addnode): tree = [[] for i in range(n)] idxs = [[] for i in range(n)] for u, v in edges: idxs[u].append(len(tree[v])) idxs[v].append(len(tree[u])) tree[u].append(v) tree[v].append(u) sub = [[unit] * len(tree[v]) for v in range(n)] noderes = [unit] * n # topological sort tp_order = [] par = [-1] * n for root in range(n): if par[root] != -1: continue stack = [root] while stack: v = stack.pop() tp_order.append(v) for nxt_v in tree[v]: if nxt_v == par[v]: continue par[nxt_v] = v stack.append(nxt_v) # tree DP for v in reversed(tp_order[1:]): res = unit par_idx = -1 for idx, nxt_v in enumerate(tree[v]): if nxt_v == par[v]: par_idx = idx continue res = merge(res, sub[v][idx]) if par_idx != -1: sub[par[v]][idxs[v][par_idx]] = addnode(res, v) # rerooting DP for v in tp_order: acc_back = [unit] * len(tree[v]) for i in reversed(range(1, len(acc_back))): acc_back[i - 1] = merge(sub[v][i], acc_back[i]) acc_front = unit for idx, nxt_v in enumerate(tree[v]): res = addnode(merge(acc_front, acc_back[idx]), v) sub[nxt_v][idxs[v][idx]] = res acc_front = merge(acc_front, sub[v][idx]) noderes[v] = addnode(acc_front, v) return sub return noderes n = int(input()) edges = [list(map(int, input().split())) for _ in range(n - 1)] es = [] tree = [[] for i in range(n)] max_cost = 0 for u, v, cost in edges: u -= 1 v -= 1 max_cost = max(max_cost, cost) es.append((u, v)) tree[u].append((v, cost)) tree[v].append((u, cost)) vals = [0] * n for u, v, cost in edges: u -= 1 v -= 1 if cost == max_cost: vals[u] = 1 vals[v] = 1 unit = 0 merge = lambda a, b: a + b addnode = lambda val, v: val + vals[v] sub = rerooting(n, es, unit, merge, addnode) for v, res in enumerate(sub): if len(res) <= 1: continue res = sorted(res, reverse=True) if res[1] != 0: vals[v] = 1 is_path = True for v in range(n): if vals[v] == 0: continue cnt = 0 for nxt_v, cost in tree[v]: if vals[nxt_v] == 1: cnt += 1 if cnt > 2: is_path = False if not is_path: print(max_cost) else: print(re)