#ifndef HIDDEN_IN_VISUAL_STUDIO // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = 3.14159265359; const double DEG = PI / 180.; // θ [deg] = θ * DEG [rad] const vi dx4 = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi dy4 = { 0, 1, 0, -1 }; const vi dx8 = { 1, 1, 0, -1, -1, -1, 0, 1 }; // 8 近傍 const vi dy8 = { 0, 1, 1, 1, 0, -1, -1, -1 }; const int INF = 1001001001; const ll INFL = 2002002002002002002LL; const double EPS = 1e-10; // 許容誤差に応じて調整 // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define distance (int)distance #define Yes(b) {cout << ((b) ? "Yes" : "No") << endl;} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define repit(it, a) for(auto it = (a).begin(); it != (a).end(); ++it) // イテレータを回す(昇順) #define repitr(it, a) for(auto it = (a).rbegin(); it != (a).rend(); ++it) // イテレータを回す(降順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 // 汎用関数の定義 template inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 演算子オーバーロード template inline istream& operator>> (istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline ostream& operator<< (ostream& os, const pair& p) { os << "(" << p.first << "," << p.second << ")"; return os; } template inline istream& operator>> (istream& is, tuple& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); return is; } template inline ostream& operator<< (ostream& os, const tuple& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << ")"; return os; } template inline istream& operator>> (istream& is, tuple& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t); return is; } template inline ostream& operator<< (ostream& os, const tuple& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << "," << get<3>(t) << ")"; return os; } template inline istream& operator>> (istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline ostream& operator<< (ostream& os, const vector& v) { repe(x, v) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const list& v) { repe(x, v) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const set& s) { repe(x, s) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const set>& s) { repe(x, s) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const unordered_set& s) { repe(x, s) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const map& m) { repe(p, m) os << p << " "; return os; } template inline ostream& operator<< (ostream& os, const unordered_map& m) { repe(p, m) os << p << " "; return os; } template inline ostream& operator<< (ostream& os, stack s) { while (!s.empty()) { os << s.top() << " "; s.pop(); } return os; } template inline ostream& operator<< (ostream& os, queue q) { while (!q.empty()) { os << q.front() << " "; q.pop(); } return os; } template inline ostream& operator<< (ostream& os, deque q) { while (!q.empty()) { os << q.front() << " "; q.pop_front(); } return os; } template inline ostream& operator<< (ostream& os, priority_queue q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; } template inline ostream& operator<< (ostream& os, priority_queue_rev q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; } template inline vector& operator--(vector& v) { rep(_i_, sz(v)) --v[_i_]; return v; } template inline vector& operator++(vector& v) { rep(_i_, sz(v)) ++v[_i_]; return v; } // 手元環境(Visual Studio) #ifdef _MSC_VER #define popcount (int)__popcnt // 全ビット中の 1 の個数 #define popcountll (int)__popcnt64 inline int lsb(unsigned int n) { unsigned long i; _BitScanForward(&i, n); return i; } // 最下位ビットの位置(0-indexed) inline int lsbll(unsigned long long n) { unsigned long i; _BitScanForward64(&i, n); return i; } inline int msb(unsigned int n) { unsigned long i; _BitScanReverse(&i, n); return i; } // 最上位ビットの位置(0-indexed) inline int msbll(unsigned long long n) { unsigned long i; _BitScanReverse64(&i, n); return i; } template T gcd(T a, T b) { return b ? gcd(b, a % b) : a; } #define dump(x) cout << "\033[1;36m" << (x) << "\033[0m" << endl; #define dumps(x) cout << "\033[1;36m" << (x) << "\033[0m "; #define dumpel(a) { int _i_ = -1; cout << "\033[1;36m"; repe(x, a) {cout << ++_i_ << ": " << x << endl;} cout << "\033[0m"; } #define input_from_file(f) ifstream isTMP(f); cin.rdbuf(isTMP.rdbuf()); #define output_to_file(f) ofstream osTMP(f); cout.rdbuf(osTMP.rdbuf()); // 提出用(gcc) #else #define popcount (int)__builtin_popcount #define popcountll (int)__builtin_popcountll #define lsb __builtin_ctz #define lsbll __builtin_ctzll #define msb(n) (31 - __builtin_clz(n)) #define msbll(n) (63 - __builtin_clzll(n)) #define gcd __gcd #define dump(x) #define dumps(x) #define dumpel(v) #define input_from_file(f) #define output_to_file(f) #endif #endif // 折りたたみ用 //-----------------AtCoder 専用----------------- #include using namespace atcoder; //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); istream& operator>> (istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<< (ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector; using vvm = vector; using vvvm = vector; template ostream& operator<<(ostream& os, segtree seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; } template ostream& operator<<(ostream& os, lazy_segtree seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; } ostream& operator<<(ostream& os, dsu d) { repe(g, d.groups()) { repe(v, g) { os << v << " "; } os << endl; } return os; }; //---------------------------------------------- //【コスト付きグラフの辺】 /* * to : 行き先の頂点番号 * cost : 辺のコスト */ struct WEdge { int to; // 行き先の頂点番号 ll cost; // 辺のコスト // コストなしグラフで呼ばれたとき用 operator int() const { return to; } // デバッグ出力 friend ostream& operator<<(ostream& os, const WEdge& e) { os << '(' << e.to << ',' << e.cost << ')'; return os; } }; //【コスト付きグラフ】 /* * WGraph g * g[v] : 頂点 v から出る辺を並べたリスト */ using WGraph = vector>; //【コスト付きグラフの入力】O(|V| + |E|)(の改変) /* * 始点 終点 コストの組からなる入力を受け取り,n 頂点 m 辺のコスト付きグラフを構成する. * * n : グラフの頂点の数 * m : グラフの辺の数 * g : ここにグラフを構築して返す * directed : 有向グラフなら true * one_indexed : 入力が 1-indexed で与えられるなら true */ void read_graph(int n, int m, WGraph& g, vector>& cab, bool directed = false, bool one_indexed = true) { g = WGraph(n); cab.resize(n - 1); rep(i, m) { int a, b; ll c; cin >> a >> b >> c; if (one_indexed) { a--; b--; } g[a].push_back({ b, c }); if (!directed) g[b].push_back({ a, c }); cab[i] = { c, a, b }; } } //【めぐる式二分探索】O(log|ok - ng|) /* * 条件 okQ() を満たす要素 ok と満たさない要素 ng との境界を二分探索する. * 境界に隣り合うような条件を満たす要素(ok 側)の位置を返す. */ template T meguru_search(T ok, T ng, function& okQ) { // 境界が決定するまで while (abs(ok - ng) > 1) { // 区間の中間 T mid = (ok + ng) / 2; // 中間が OK かどうかに応じて区間を縮小する. if (okQ(mid)) ok = mid; else ng = mid; } return ok; } //【コスト付き木上のシュタイナー木】O(n)(の改変) /* * コスト付き無向木 g の頂点集合 v を含む最小の木を st に構築し,その合計コストを返す. * また st の頂点 i が g のどの頂点と対応するかを id[i] に格納する. */ ll steiner_tree(const WGraph& g, const vi& v, WGraph& st, vi& id) { int n = sz(g); vb sel(n); // v に属するか repe(s, v) sel[s] = true; vi deg(n); // 次数 queue q_deg1; // 次数 1 の頂点を入れておくキュー rep(s, n) { deg[s] = sz(g[s]); if (!sel[s] && deg[s] == 1) q_deg1.push(s); } // 次数 1 で v に属さない頂点を次々に除去していく. int m = n; while (!q_deg1.empty()) { int s = q_deg1.front(); q_deg1.pop(); deg[s] = -1; // st から除外の意味とする m--; repe(t, g[s]) { if (deg[t] > 0) deg[t]--; if (!sel[t] && deg[t] == 1) q_deg1.push(t); } } st.resize(m); id.resize(m); vi id_inv(n); queue q_st; q_st.push(v[0]); id[0] = v[0]; id_inv[v[0]] = 0; int i = 1; ll cost = INFL; // 幅優先探索で st の頂点をなぞりつつ新たな木を構築する. while (!q_st.empty()) { int s = q_st.front(); q_st.pop(); repe(t, g[s]) { if (deg[t] >= 0) { id[i] = t; id_inv[t] = i; st[id_inv[s]].push_back({ i, t.cost }); st[i].push_back({ id_inv[s], t.cost }); chmin(cost, t.cost); q_st.push(t); i++; } } deg[s] = -2; // 探索終了の意味とする } return cost; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n; cin >> n; WGraph g; vector> cab; read_graph(n, n - 1, g, cab); sort(all(cab)); ll max_cost = get<0>(cab[n - 2]); // 混雑度を x 以下にすることが可能か function okQ = [&](ll x) { // 混雑度を下げないといけない辺の両端の頂点の集合を得る. unordered_set vs; repir(i, n - 2, 0) { int a, b; ll c; tie(c, a, b) = cab[i]; if (c <= x) break; vs.insert(a); vs.insert(b); } vi vs_vec; repe(v, vs) vs_vec.push_back(v); // 先の頂点の集合を含むシュタイナー木を構築する. WGraph st; vi id; ll min_cost = steiner_tree(g, vs_vec, st, id); // シュタイナー木がパスグラフでないなら不可能. rep(s, sz(st)) { if (sz(st[s]) >= 3) { return false; } } // シュタイナー木がパスグラフなら,その両端を地下鉄で結ぶのが最善. return max_cost - min_cost <= x; }; ll res = meguru_search(max_cost, -1LL, okQ); cout << res << endl; }