#include #include using namespace std; using namespace atcoder; struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; #define FOR(i, begin, end) for(int i=(begin);i<(end);i++) #define REP(i, n) FOR(i,0,n) #define IFOR(i, begin, end) for(int i=(end)-1;i>=(begin);i--) #define IREP(i, n) IFOR(i,0,n) using ll = long long; const int mod = 998244353; using mint = modint998244353; using mvec = vector; using mmat = vector; #define debug(x) cout << #x << "=" << x << endl; #define vdebug(v) { cout << #v << "=" << endl; REP(i_debug, (int)v.size()){ cout << v[i_debug] << ","; } cout << endl; } #define mdebug(m) { cout << #m << "=" << endl; REP(i_debug, (int)m.size()){ REP(j_debug, (int)m[i_debug].size()){ cout << m[i_debug][j_debug] << ","; } cout << endl;} } // Library Checker "Characteristic Polynomial" より引用 // https://judge.yosupo.jp/submission/68640 namespace LibraryChecker { template std::vector characteristic_polynomial(std::vector> M) { assert(M.empty() or M.size() == M[0].size()); int n = M.size(); // reduce M to upper Hessenberg form for (int j = 0; j < n - 2; j++) { for (int i = j + 2; i < n; i++) { if (M[i][j] != 0) { std::swap(M[j + 1], M[i]); for (int k = 0; k < n; k++) std::swap(M[k][j + 1], M[k][i]); break; } } if (M[j + 1][j] == 0) continue; auto inv = T(1) / M[j + 1][j]; for (int i = j + 2; i < n; i++) { auto coef = M[i][j] * inv; for (int k = j; k < n; k++) M[i][k] -= coef * M[j + 1][k]; for (int k = 0; k < n; k++) M[k][j + 1] += coef * M[k][i]; } } // compute the characteristic polynomial of upper Hessenberg matrix M std::vector> p(n + 1); p[0] = {T(1)}; for (int i = 0; i < n; i++) { p[i + 1].resize(i + 2); for (int j = 0; j <= i; j++) { p[i + 1][j + 1] += p[i][j]; p[i + 1][j] -= p[i][j] * M[i][i]; } T betas = 1; for (int j = i - 1; j >= 0; j--) { betas *= M[j + 1][j]; T coef = -betas * M[j][i]; for (int k = 0; k <= j; k++) p[i + 1][k] += coef * p[j][k]; } } return p[n]; } } // namespace LibraryChecker mmat read_matrix(int N){ mmat M(N, mvec(N)); REP(i, N) REP(j, N){ int x; cin >> x; M[i][j] = x; } return M; } void write_matrix(mmat M){ int N = M.size(); REP(i, N){ REP(j, N) cout << M[i][j].val() << ','; cout << endl; } } mmat mult_matrix(mmat A, mmat B){ int N = A.size(); mmat C(N, mvec(N)); REP(i, N) REP(j, N) REP(k, N) C[i][j] += A[i][k] * B[k][j]; return C; } //swap M[i,:] and M[j,:] void swap_row(mmat &M, int i, int j){ assert(i != j); M[i].swap(M[j]); } //swap M[:,i] and M[:,j] void swap_column(mmat &M, int i, int j){ assert(i != j); int N = M.size(); REP(k, N) swap(M[k][i], M[k][j]); } //M[i,:]-=a*M[j:] void sbt_row(mmat &M, int i, int j, mint a){ assert(i != j); int N = M.size(); REP(k, N) M[i][k] -= a * M[j][k]; } //M[:,i]-=a*M[:,j] void sbt_column(mmat &M, int i, int j, mint a){ assert(i != j); int N = M.size(); REP(k, N) M[k][i] -= a * M[k][j]; } //M[i,:]*=a; void mult_row(mmat &M, int i, mint a){ int N = M.size(); REP(k, N) M[i][k] *= a; } template T determinant(vector> A){ int N = A.size(); for(int j = 0; j < N; j++) assert((int)A[j].size() == N); T m1 = 0; m1 -= 1; // -1, mintでバグらないように T d = 1; for(int j = 0; j < N; j++){ int i0 = -1; for(int i = j; i < N; i++) if(!(A[i][j] == 0)){ i0 = i; break; } if(i0 == -1) return 0; if(i0 != j){ d *= m1; A[j].swap(A[i0]); } d *= A[j][j]; for(int i = j + 1; i < N; i++){ if(A[i][j] == 0) continue; T alpha = A[i][j] / A[j][j]; for(int k = j; k < N; k++){ A[i][k] -= A[j][k] * alpha; } } } return d; } struct fast_random { uint32_t x; fast_random(int seed = 2463534242): x(seed){} uint32_t xorshift(){ x ^= (x << 13); x ^= (x >> 17); x ^= (x << 5); return x; } //random integer in [a, b] uint32_t randint(uint32_t a, uint32_t b){ return a + xorshift() % (b - a + 1); } double uniform(){ return (double)xorshift() / UINT32_MAX; } double uniform(double a, double b){ return a + uniform() * (b - a); } }; fast_random rng; //return a random matrix with determinant 1 mmat random_matrix(int N){ while(true){ mmat A(N, mvec(N)); REP(i, N) REP(j, N) A[i][j] = rng.randint(0, mod - 1); mint D = determinant(A); if(D.val() != 0){ REP(j, N) A[0][j] /= D; return A; } } } bool solve(mmat A, mmat B, mvec &ans){ /* X * O D の形にする ここで、X=xI-M (Mは定数行列), Dは定数のみの上三角行列 Xのサイズはrank(B) Dは正則でなければならない */ int N = A.size(); //まずX求める int rankB = 0; mint factor = 1; REP(d, N){ int x = -1, y = -1; FOR(i, d, N){ FOR(j, d, N){ if(B[i][j].val() != 0){ x = i; y = j; break; } } if(x != -1) break; } if(x == -1) break; rankB++; if(x != d){ swap_row(A, x, d); swap_row(B, x, d); factor *= -1; } if(y != d){ swap_column(A, y, d); swap_column(B, y, d); factor *= -1; } FOR(i, d + 1, N){ mint a = B[i][d] / B[d][d]; sbt_row(A, i, d, a); sbt_row(B, i, d, a); } FOR(j, d + 1, N){ mint a = B[d][j] / B[d][d]; sbt_column(A, j, d, a); sbt_column(B, j, d, a); } factor *= B[d][d]; mult_row(A, d, (mint)1 / B[d][d]); B[d][d] = 1; } // 右下整理してDを求める FOR(d, rankB, N){ int x = -1, y = -1; FOR(i, d, N){ FOR(j, d, N){ if(A[i][j].val() != 0){ x = i; y = j; break; } } if(x != -1) break; } if(x == -1) return false; if(x != d){ swap_row(A, x, d); factor *= -1; } if(y != d){ swap_column(A, y, d); factor *= -1; } FOR(i, d + 1, N){ mint a = A[i][d] / A[d][d]; sbt_row(A, i, d, a); } FOR(j, 0, d){ mint a = A[d][j] / A[d][d]; sbt_column(A, j, d, a); } } IFOR(d, rankB, N){ FOR(j, 0, d){ mint a = A[d][j] / A[d][d]; sbt_column(A, j, d, a); } factor *= A[d][d]; } mmat X(rankB, mvec(rankB)); REP(i, rankB) REP(j, rankB) X[i][j] = -A[i][j]; ans = LibraryChecker::characteristic_polynomial(X); ans.resize(N + 1); REP(i, N + 1) ans[i] *= factor; return true; } int main(){ int N; cin >> N; auto A = read_matrix(N); auto B = read_matrix(N); mvec ans(N + 1, 0); // とりあえずランダム行列かけとく auto R = random_matrix(N); auto A0 = mult_matrix(R, A), B0 = mult_matrix(R, B); if(!solve(A0, B0, ans)){ // Dが正則にならなかったらだめだけど、 // だめなら行列式は定数と信じる ans[0] = determinant(A0); } REP(i, N + 1) cout << ans[i].val() << endl; return 0; }