// #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #define CONSTANTS #define MINT_TO_LL_CAST #define _USE_MATH_DEFINES #include using namespace std; constexpr long long INF = 1e18; // constexpr long long INF = LONG_LONG_MAX; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr long double EPS = 1e-10; constexpr long double PI = M_PI; using ll = long long; using ull = unsigned long long; using ld = long double; using pll = pair; using pii = pair; using pil = pair; using vvl = vector>; using vvi = vector>; using vvpll = vector>; using vvpil = vector>; #define name4(i, a, b, c, d, e, ...) e #define rep(...) name4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__) #define rep1(i, a) for (ll i = 0, _aa = a; i < _aa; i++) #define rep2(i, a, b) for (ll i = a, _bb = b; i < _bb; i++) #define rep3(i, a, b, c) for (ll i = a, _bb = b; (c > 0 && a <= i && i < _bb) or (c < 0 && a >= i && i > _bb); i += c) #define rrep(i, a, b) for (ll i=(a); i>(b); i--) #define pb push_back #define eb emplace_back #define mkp make_pair #define ALL(A) A.begin(), A.end() #define UNIQUE(A) sort(ALL(A)), A.erase(unique(ALL(A)), A.end()) #define elif else if #define tostr to_string #ifndef CONSTANTS constexpr ll INF = 1e18; constexpr int MOD = 1000000007; constexpr ld EPS = 1e-10; constexpr ld PI = M_PI; #endif template struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator++() { x++; if (x == mod) x = 0; return *this; } ModInt &operator--() { if (x == 0) x = mod; x--; return *this; } ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inv(); return *this; } ModInt operator++(int) { ModInt result = *this; ++*this; return result; } ModInt operator--(int) { ModInt result = *this; --*this; return result; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inv() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } #ifdef MINT_TO_LL_CAST operator ll() const { return x; } #endif }; using mint = ModInt; template vector> list2d(int N, int M, T init) { return vector>(N, vector(M, init)); } template vector>> list3d(int N, int M, int L, T init) { return vector>>(N, vector>(M, vector(L, init))); } template vector>>> list4d(int N, int M, int L, int O, T init) { return vector>>>(N, vector>>(M, vector>(L, vector(O, init)))); } template vector LIST(ll N) { vector A(N); rep(i, N) { cin >> A[i]; } return A; } void print() { cout << '\n'; } template void print(T out) { cout << out << '\n'; } template void print(const pair &p) { cout << p.first << ' ' << p.second << '\n'; } template void print(const tuple &tp) { cout << get<0>(tp) << ' ' << get<1>(tp) << ' ' << get<2>(tp) << '\n'; } template void print(const tuple &tp) { cout << get<0>(tp) << ' ' << get<1>(tp) << ' ' << get<2>(tp) << ' ' << get<3>(tp) << '\n'; } template void print(const vector> &V) { for (auto& p : V) print(p); } template void print(const vector &V) { rep(i, V.size()) { cout << V[i]; if (i != V.size()-1) cout << ' '; } cout << '\n'; } template void print(const array &arr) { rep(i, arr.size()) { cout << arr[i]; if (i != arr.size()-1) cout << ' '; } cout << '\n'; } template void print(const vector> &V) { for (auto& arr : V) print(arr); } template void print(const deque &que) { vector V(ALL(que)); print(V); } template void print(const set &se) { vector V(ALL(se)); print(V); } #define debug(x) (cout << #x << ": ", print(x)); void Yes() { print("Yes"); } void No() { print("No"); } void YES() { print("YES"); } void NO() { print("NO"); } ll toint(string s) { assert(s.size() < 20); ll res = 0; for (char &c : s) { res *= 10; res += c - '0'; } return res; } int toint(char num) { return num - '0'; } char tochar(int num) { return '0' + num; } template T ceil(T a, T b) { if (a >= 0) return (a+b-1) / b; else return a / b; } template T modulo(T a, T b) { return ((a % b) + b) % b; } template pair divmod(T a, T b) { T d = a / b; T m = a % b; return {d, m}; } template bool chmin(T &x, T y) { return (y < x) ? x = y, true : false; } template bool chmax(T &x, T y) { return (y > x) ? x = y, true : false; } template T sum(const vector &A) { return accumulate(ALL(A), (T)0); } template val sum(const map &mp) { val res = 0; for (auto& [k, v] : mp) res += v; return res; } template T min(const vector &A) { return *min_element(ALL(A)); } template val min(const map &mp) { val res = numeric_limits::max(); for (auto& [k, v] : mp) chmin(res, v); return res; } template T max(const vector &A) { return *max_element(ALL(A)); } template val max(const map &mp) { val res = numeric_limits::min(); for (auto& [k, v] : mp) chmax(res, v); return res; } ll pow(ll x, ll n) { ll res = 1; rep(_, n) res *= x; return res; } ll pow(int x, ll n) { return pow((ll)x, n); } ll pow(ll x, int n) { return pow(x, (ll)n); } ll pow(int x, int n) { return pow((ll)x, (ll)n); } ll pow(ll x, ll n, int mod) { x %= mod; ll res = 1; while (n > 0) { if (n & 1) { res = (res * x) % mod; } x = (x * x) % mod; n >>= 1; } return res; } int popcount(ll S) { return __builtin_popcountll(S); } int bit_length(ll x) { return x != 0 ? floor(log2((ld)x))+1 : 0; } template int bisect_left(const vector &A, T val, int lo=0) { return lower_bound(A.begin()+lo, A.end(), val) - A.begin(); } template int bisect_right(const vector &A, T val, int lo=0) { return upper_bound(A.begin()+lo, A.end(), val) - A.begin(); } template map Counter(const vector &A) { map res; for (T a : A) { res[a]++; } return res; } template vector Counter(const vector &A, T mx) { vector res(mx+1); for (T a : A) { res[a]++; } return res; } map Counter(const string &S) { map res; for (char c : S) { res[c]++; } return res; } template ll bisearch_min(ll mn, ll mx, const F &func) { ll ok = mx; ll ng = mn; while (ng+1 < ok) { ll mid = (ok+ng) / 2; if (func(mid)) { ok = mid; } else { ng = mid; } } return ok; } template ll bisearch_max(ll mn, ll mx, const F &func) { ll ok = mn; ll ng = mx; while (ok+1 < ng) { ll mid = (ok+ng) / 2; if (func(mid)) { ok = mid; } else { ng = mid; } } return ok; } template pair, vector> zip(const vector> &A) { int N = A.size(); pair, vector> res = {vector(N), vector(N)}; rep(i, N) { res.first[i] = A[i].first; res.second[i] = A[i].second; } return res; } template tuple, vector, vector> zip(const vector> &A) { int N = A.size(); tuple, vector, vector> res = {vector(N), vector(N), vector(N)}; rep(i, N) { get<0>(res)[i] = get<0>(A[i]); get<1>(res)[i] = get<1>(A[i]); get<2>(res)[i] = get<2>(A[i]); } return res; } template struct Compress { int N; vector dat; Compress(vector A) { sort(A.begin(), A.end()); A.erase(unique(A.begin(), A.end()), A.end()); N = A.size(); dat = A; } int zip(T x) { return bisect_left(dat, x); } T unzip(int x) { return dat[x]; } int operator[](T x) { return zip(x); } int size() { return dat.size(); } vector zip(const vector &A) { int M = A.size(); vector res(M); rep(i, M) res[i] = zip(A[i]); return res; } }; template vector> RLE(const vector &A) { if (A.empty()) return {}; int N = A.size(); vector> res; T cur = A[0]; int cnt = 1; rep(i, 1, N) { if (A[i] == A[i-1]) { cnt++; } else { res.pb({cur, cnt}); cnt = 1; cur = A[i]; } } res.pb({cur, cnt}); return res; } vector> RLE(const string &S) { if (S.empty()) return {}; int N = S.size(); vector> res; char cur = S[0]; int cnt = 1; rep(i, 1, N) { if (S[i] == S[i-1]) { cnt++; } else { res.pb({cur, cnt}); cnt = 1; cur = S[i]; } } res.pb({cur, cnt}); return res; } template bool mul_overflow(T x, T y) { T z; return __builtin_mul_overflow(x, y, &z); } vector split(const string &S, char separator) { int N = S.size(); vector res; string cur; rep(i, N) { if (S[i] == separator) { res.eb(toint(cur)); cur = ""; } else { cur += S[i]; } } if (cur.size()) res.eb(toint(cur)); return res; } string to_string(const string &S) { return S; } string to_string(char c) { return {c}; } template string join(const vector &A, char separator=0) { int N = A.size(); string res; rep(i, N) { res += tostr(A[i]); if (separator != 0 and i != N-1) res += separator; } return res; } template vector sorted(vector A, bool reverse=false) { sort(ALL(A)); if (reverse) std::reverse(ALL(A)); return A; } template vector reversed(vector A) { reverse(ALL(A)); return A; } template struct ModTools { int MAX; vector fact, factinv, inv; ModTools() {}; ModTools(int mx) { build(mx); } void build(int mx) { MAX = ++mx; fact.resize(MAX); factinv.resize(MAX); inv.resize(MAX); fact[0] = fact[1] = 1; rep(i, 2, MAX) { fact[i] = fact[i-1]*(Mint)i; } factinv[MAX-1] = (Mint)1/fact[MAX-1]; rep(i, MAX-2, -1, -1) { factinv[i] = factinv[i+1]*(Mint)(i+1); } rep(i, MAX-1, 0, -1) { inv[i] = factinv[i]*fact[i-1]; } } Mint div(Mint a, int b) { return a*inv[b]; } Mint factorial(int x) { return fact[x]; } Mint inverse(int x) { return factinv[x]; } Mint nCr(int n, int r) { if (n < r or r < 0) return 0; r = min(r, n-r); Mint num = fact[n]; Mint den = factinv[r] * factinv[n-r]; return num * den; } Mint nHr(int n, int r) { return nCr(r+n-1, r); } Mint nPr(int n, int r) { if (n < r or r < 0) return 0; return fact[n] * factinv[n-r]; } }; template vector> permutations(const vector &A, int N=-1) { if (N == -1) N = A.size(); int M = A.size(); assert(N <= M); vector> comb; rep(bit, 1< res; rep(i, M) { if (bit>>i & 1) { res.pb(A[i]); } } comb.pb(res); } vector> res; for (auto &perm : comb) { sort(ALL(perm)); do { res.pb(perm); } while (next_permutation(ALL(perm))); } return res; } template vector> combinations(const vector &A, int N) { int M = A.size(); vector> res; auto rec = [&](auto&& f, vector &cur, ll x, ll n) -> void { if (n == N) { res.pb(cur); return; } rep(i, x, M) { cur.pb(A[i]); f(f, cur, i+1, n+1); cur.pop_back(); } }; vector cur; rec(rec, cur, 0, 0); return res; } ll nC2(ll n) { if (n < 2) return 0; return n*(n-1)/2; } template T factorial(int x) { T res = 1; for (int i=1; i<=x; i++) res *= i; return res; } struct UnionFind { int n, groupcnt; vector par, rank, sz; vector tree; UnionFind(int n) : n(n) { par.assign(n, 0); rank.assign(n, 0); sz.assign(n, 1); tree.assign(n, true); rep(i, n) par[i] = i; groupcnt = n; } UnionFind() {} void resize(int _n) { n = _n; par.assign(n, 0); rank.assign(n, 0); sz.assign(n, 1); tree.assign(n, true); rep(i, n) par[i] = i; groupcnt = n; } int find(int x) { if (par[x] == x) { return x; } else { par[x] = find(par[x]); return par[x]; } } int merge(int a, int b) { int x = find(a); int y = find(b); if (x == y) { tree[x] = false; return x; } if (!tree[x] or !tree[y]) { tree[x] = tree[y] = false; } groupcnt--; if (rank[x] < rank[y]) { par[x] = y; sz[y] += sz[x]; return y; } else { par[y] = x; sz[x] += sz[y]; if (rank[x] == rank[y]) { rank[x]++; } return x; } } bool same(int a, int b) { return find(a) == find(b); } ll size(int x) { return sz[find(x)]; } int size() { return groupcnt; } bool is_tree(int x) { return tree[find(x)]; } set get_roots() { set res; rep(i, n) { res.insert(find(i)); } return res; } }; const vector dir4 = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; #define directions dir4 ll gridtoid(ll i, ll j, ll W) { return i*W+j; } pll idtogrid(ll id, ll W) { return divmod(id, W); } template struct defaultdict : map<_Key, _Tp> { const _Tp init; defaultdict() : init(_Tp()) {}; defaultdict(_Tp init) : init(init) {} _Tp& operator[](const _Key& k) { if (this->count(k)) { return map<_Key, _Tp>::operator[](k); } else { return map<_Key, _Tp>::operator[](k) = init; } } _Tp& operator[](_Key&& k) { if (this->count(k)) { return map<_Key, _Tp>::operator[](k); } else { return map<_Key, _Tp>::operator[](k) = init; } } }; ll gcd(ll a, ll b) { return __gcd(a, b); } template T gcd(const vector &A) { T res = 0; for (auto a : A) res = gcd(res, a); return res; } ll lcm(ll x, ll y) { return x/gcd(x, y)*y; } template T lcm(const vector &A) { T res = 1; for (auto a : A) res = lcm(res, a); return res; } template vector> factorize(T n) { vector> ret; for (T i=2; i*i<=n; i++) { int cnt = 0; while (n % i == 0) { n /= i; cnt++; } if (cnt) ret.emplace_back(i, cnt); } if (n > 1) ret.emplace_back(n, 1); return ret; } template vector divisors(T n) { vector res; for (T i=1; i*i<=n; i++) { if (n%i == 0) { res.eb(i); if (n/i != i) res.eb(n/i); } } return res; } ll isqrt(ll n, bool ceil=false) { ll ok = 0; ll ng = 3037000500; while (ng - ok > 1) { ll m = ok + (ng - ok) / 2; if (m * m <= n) { ok = m; } else { ng = m; } } if (ceil and ok*ok != n) ok++; return ok; } template struct Accumulate { vector acc; int N; Accumulate() {} Accumulate(int N) : N(N) { acc.resize(N); } Accumulate(const vector &A) { N = A.size(); acc = A; build(); } void set(int i, T a) { acc[i] = a; } void build() { rep(i, N-1) { acc[i+1] += acc[i]; } acc.insert(acc.begin(), 0); } T query(int l, int r) { assert(0 <= l and l <= N and 0 <= r and r <= N); return acc[r]-acc[l]; } T get(int i) { return query(i, i+1); } T operator[](int i){ return query(i, i+1); } ll bisearch_fore(int l, int r, ll x) { if (l > r) return -1; ll l_sm = query(0, l); int ok = r + 1; int ng = l - 1; while (ng+1 < ok) { int mid = (ok+ng) / 2; if (query(0, mid+1) - l_sm >= x) { ok = mid; } else { ng = mid; } } if (ok != r+1) { return ok; } else { return -1; } } ll bisearch_back(int l, int r, ll x) { if (l > r) return -1; ll r_sm = query(0, r+1); int ok = l - 1; int ng = r + 1; while (ok+1 < ng) { int mid = (ok+ng) / 2; if (r_sm - query(0, mid) >= x) { ok = mid; } else { ng = mid; } } if (ok != l-1) { return ok; } else { return -1; } } }; template struct BIT { int sz; vector tree; BIT(int n) { n++; sz = 1; while (sz < n) { sz *= 2; } tree.resize(sz); } T sum(int i) { T s = 0; i++; while (i > 0) { s += tree[i-1]; i -= i & -i; } return s; } void add(int i, T x) { i++; while (i <= sz) { tree[i-1] += x; i += i & -i; } } T query(int l, int r) { return sum(r-1) - sum(l-1); } T get(int i) { return query(i, i+1); } void update(int i, T x) { add(i, x - get(i)); } T operator[](int i) { return query(i, i+1); } void print(int n) { rep(i, n) { cout << query(i, i+1); if (i == n-1) cout << endl; else cout << ' '; } } ll bisearch_fore(int l, int r, ll x) { if (l > r) return -1; ll l_sm = sum(l-1); int ok = r + 1; int ng = l - 1; while (ng+1 < ok) { int mid = (ok+ng) / 2; if (sum(mid) - l_sm >= x) { ok = mid; } else { ng = mid; } } if (ok != r+1) { return ok; } else { return -1; } } ll bisearch_back(int l, int r, ll x) { if (l > r) return -1; ll r_sm = sum(r); int ok = l - 1; int ng = r + 1; while (ok+1 < ng) { int mid = (ok+ng) / 2; if (r_sm - sum(mid-1) >= x) { ok = mid; } else { ng = mid; } } if (ok != l-1) { return ok; } else { return -1; } } }; template struct SegmentTree { int sz; vector seg; const F f; const Monoid M1; SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1) { sz = 1; while(sz < n) sz <<= 1; seg.assign(2 * sz, M1); } SegmentTree(const F f, const Monoid &M1) : f(f), M1(M1) {} void resize(int n) { sz = 1; while(sz < n) sz <<= 1; seg.resize(2 * sz, M1); } void clear() { seg.clear(); } void set(int k, const Monoid &x) { seg[k+sz] = x; } void build() { for(int k = sz - 1; k > 0; k--) { seg[k] = f(seg[2*k], seg[2*k+1]); } } void build(const vector &A) { int n = A.size(); resize(n); rep(i, n) set(i, A[i]); build(); } void update(int k, const Monoid &x) { k += sz; seg[k] = x; while(k >>= 1) { seg[k] = f(seg[2*k], seg[2*k+1]); } } Monoid query(int a, int b) { Monoid L = M1, R = M1; for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if(a & 1) L = f(L, seg[a++]); if(b & 1) R = f(seg[--b], R); } return f(L, R); } Monoid operator[](const int &k) const { return seg[k+sz]; } Monoid all() { return seg[1]; } void print(int n) { for (int i=0; i int find_subtree(int a, const C &check, Monoid &M, bool type) { while(a < sz) { Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]); if(check(nxt)) a = 2 * a + type; else M = nxt, a = 2 * a + 1 - type; } return a - sz; } template int find_first(int a, const C &check) { Monoid L = M1; if(a <= 0) { if(check(f(L, seg[1]))) return find_subtree(1, check, L, false); return -1; } int b = sz; for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if(a & 1) { Monoid nxt = f(L, seg[a]); if(check(nxt)) return find_subtree(a, check, L, false); L = nxt; ++a; } } return -1; } template int find_last(int b, const C &check) { Monoid R = M1; if(b >= sz) { if(check(f(seg[1], R))) return find_subtree(1, check, R, true); return -1; } int a = sz; for(b += sz; a < b; a >>= 1, b >>= 1) { if(b & 1) { Monoid nxt = f(seg[--b], R); if(check(nxt)) return find_subtree(b, check, R, true); R = nxt; } } return -1; } }; template SegmentTree get_segment_tree(int N, const F& f, const Monoid& M1) { return {N, f, M1}; } template SegmentTree get_segment_tree(const F& f, const Monoid& M1) { return {f, M1}; } const string digits = "0123456789"; const string ascii_lowercase = "abcdefghijklmnopqrstuvwxyz"; const string ascii_uppercase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; string zfill(string str, int len) { string zeros; int n = str.size(); rep(i, len-n) zeros += '0'; return zeros+str; } string bin(ll x) { string res; while (x) { if (x & 1) { res += '1'; } else { res += '0'; } x >>= 1; } reverse(ALL(res)); if (res == "") res += '0'; return res; } namespace FastFourierTransform { using real = double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C &c) const { return C(x + c.x, y + c.y); } inline C operator-(const C &c) const { return C(x - c.x, y - c.y); } inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector< C > rts = { {0, 0}, {1, 0} }; vector< int > rev = {0, 1}; void ensure_base(int nbase) { if(nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for(int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while(base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for(int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector< C > &a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for(int i = 0; i < n; i++) { if(i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for(int k = 1; k < n; k <<= 1) { for(int i = 0; i < n; i += 2 * k) { for(int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } vector< int64_t > multiply(const vector< int > &a, const vector< int > &b) { int need = (int) a.size() + (int) b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < sz; i++) { int x = (i < (int) a.size() ? a[i] : 0); int y = (i < (int) b.size() ? b[i] : 0); fa[i] = C(x, y); } fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for(int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } fft(fa, sz >> 1); vector< int64_t > ret(need); for(int i = 0; i < need; i++) { ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } }; /* * @brief Arbitrary Mod Convolution */ template< typename T > struct ArbitraryModConvolution { using real = FastFourierTransform::real; using C = FastFourierTransform::C; ArbitraryModConvolution() = default; static vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) { if(need == -1) need = a.size() + b.size() - 1; int nbase = 0; while((1 << nbase) < need) nbase++; FastFourierTransform::ensure_base(nbase); int sz = 1 << nbase; vector< C > fa(sz); for(int i = 0; i < a.size(); i++) { fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15); } fft(fa, sz); vector< C > fb(sz); if(a == b) { fb = fa; } else { for(int i = 0; i < b.size(); i++) { fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15); } fft(fb, sz); } real ratio = 0.25 / sz; C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1); for(int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C a1 = (fa[i] + fa[j].conj()); C a2 = (fa[i] - fa[j].conj()) * r2; C b1 = (fb[i] + fb[j].conj()) * r3; C b2 = (fb[i] - fb[j].conj()) * r4; if(i != j) { C c1 = (fa[j] + fa[i].conj()); C c2 = (fa[j] - fa[i].conj()) * r2; C d1 = (fb[j] + fb[i].conj()) * r3; C d2 = (fb[j] - fb[i].conj()) * r4; fa[i] = c1 * d1 + c2 * d2 * r5; fb[i] = c1 * d2 + c2 * d1; } fa[j] = a1 * b1 + a2 * b2 * r5; fb[j] = a1 * b2 + a2 * b1; } fft(fa, sz); fft(fb, sz); vector< T > ret(need); for(int i = 0; i < need; i++) { int64_t aa = llround(fa[i].x); int64_t bb = llround(fb[i].x); int64_t cc = llround(fa[i].y); aa = T(aa).x, bb = T(bb).x, cc = T(cc).x; ret[i] = aa + (bb << 15) + (cc << 30); } return ret; } }; /** * @brief Formal Power Series */ template< typename T > struct FormalPowerSeries : vector< T > { using vector< T >::vector; using P = FormalPowerSeries; using Conv = ArbitraryModConvolution< T >; P pre(int deg) const { return P(begin(*this), begin(*this) + min((int) this->size(), deg)); } P rev(int deg = -1) const { P ret(*this); if(deg != -1) ret.resize(deg, T(0)); reverse(begin(ret), end(ret)); return ret; } void shrink() { while(this->size() && this->back() == T(0)) this->pop_back(); } void shrink(int deg) { while(this->size() && this->back() == T(0) or this->size() > deg) this->pop_back(); } P operator+(const P &r) const { return P(*this) += r; } P operator+(const T &v) const { return P(*this) += v; } P operator-(const P &r) const { return P(*this) -= r; } P operator-(const T &v) const { return P(*this) -= v; } P operator*(const P &r) const { return P(*this) *= r; } P operator*(const T &v) const { return P(*this) *= v; } P operator/(const P &r) const { return P(*this) /= r; } P operator%(const P &r) const { return P(*this) %= r; } P &operator+=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] += r[i]; return *this; } P &operator-=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i]; return *this; } P &operator*=(const P &r) { if(this->empty() || r.empty()) { this->clear(); return *this; } auto ret = Conv::multiply(*this, r); return *this = {begin(ret), end(ret)}; } P &operator/=(const P &r) { if(this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n); } P &operator%=(const P &r) { return *this -= *this / r * r; } pair< P, P > div_mod(const P &r) { P q = *this / r; return make_pair(q, *this - q * r); } P operator-() const { P ret(this->size()); for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i]; return ret; } P &operator+=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] += r; return *this; } P &operator-=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] -= r; return *this; } P &operator*=(const T &v) { for(int i = 0; i < this->size(); i++) (*this)[i] *= v; return *this; } P dot(P r) const { P ret(min(this->size(), r.size())); for(int i = 0; i < ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } P operator>>(int sz) const { if(this->size() <= sz) return {}; P ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } P operator<<(int sz) const { P ret(*this); ret.insert(ret.begin(), sz, T(0)); return ret; } T operator()(T x) const { T r = 0, w = 1; for(auto &v : *this) { r += w * v; w *= x; } return r; } P diff() const { const int n = (int) this->size(); P ret(max(0, n - 1)); for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i); return ret; } P integral() const { const int n = (int) this->size(); P ret(n + 1); ret[0] = T(0); for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1); return ret; } P inv(int deg = -1) const { assert(((*this)[0]) != T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; P ret({T(1) / (*this)[0]}); for(int i = 1; i < deg; i <<= 1) { ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1); } return ret.pre(deg); } P log(int deg = -1) const { assert((*this)[0] == T(1)); const int n = (int) this->size(); if(deg == -1) deg = n; return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } P sqrt(int deg = -1, const function< T(T) > &get_sqrt = [](T) { return T(1); }) const { const int n = (int) this->size(); if(deg == -1) deg = n; if((*this)[0] == T(0)) { for(int i = 1; i < n; i++) { if((*this)[i] != T(0)) { if(i & 1) return {}; if(deg - i / 2 <= 0) break; auto ret = (*this >> i).sqrt(deg - i / 2, get_sqrt); if(ret.empty()) return {}; ret = ret << (i / 2); if(ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return P(deg, 0); } auto sqr = T(get_sqrt((*this)[0])); if(sqr * sqr != (*this)[0]) return {}; P ret{sqr}; T inv2 = T(1) / T(2); for(int i = 1; i < deg; i <<= 1) { ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2; } return ret.pre(deg); } P sqrt(const function< T(T) > &get_sqrt, int deg = -1) const { return sqrt(deg, get_sqrt); } P exp(int deg = -1) const { if(deg == -1) deg = this->size(); assert((*this)[0] == T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; P ret({T(1)}); for(int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1); } return ret.pre(deg); } P pow(int64_t k, int deg = -1) const { const int n = (int) this->size(); if(deg == -1) deg = n; for(int i = 0; i < n; i++) { if((*this)[i] != T(0)) { T rev = T(1) / (*this)[i]; P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k)); if(i * k > deg) return P(deg, T(0)); ret = (ret << (i * k)).pre(deg); if(ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return *this; } P mod_pow(int64_t k, P g) const { P modinv = g.rev().inv(); auto get_div = [&](P base) { if(base.size() < g.size()) { base.clear(); return base; } int n = base.size() - g.size() + 1; return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n); }; P x(*this), ret{1}; while(k > 0) { if(k & 1) { ret *= x; ret -= get_div(ret) * g; ret.shrink(); } x *= x; x -= get_div(x) * g; x.shrink(); k >>= 1; } return ret; } P taylor_shift(T c) const { int n = (int) this->size(); vector< T > fact(n), rfact(n); fact[0] = rfact[0] = T(1); for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i); rfact[n - 1] = T(1) / fact[n - 1]; for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i); P p(*this); for(int i = 0; i < n; i++) p[i] *= fact[i]; p = p.rev(); P bs(n, T(1)); for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1]; p = (p * bs).pre(n); p = p.rev(); for(int i = 0; i < n; i++) p[i] *= rfact[i]; return p; } P &operator*=(vector> g) { int n = (*this).size(); auto [d, c] = g.front(); if (d == 0) g.erase(g.begin()); else c = 0; rep(i, n-1, -1, -1) { (*this)[i] *= c; for (auto &[j, b] : g) { if (j > i) break; (*this)[i] += (*this)[i-j] * b; } } return *this; } P &operator/=(vector> g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); rep(i, n) { for (auto &[j, b] : g) { if (j > i) break; (*this)[i] -= (*this)[i-j] * b; } (*this)[i] *= ic; } return *this; } }; template using FPS = FormalPowerSeries; template void print(const FPS &F) { vector A(F.begin(), F.end()); print(A); } // 繰り返し二乗法 template void pow(FPS& base, FPS A, ll k, int deg=-1) { int n = deg; if (deg == -1) n = max(base.size(), A.size()); while (k > 0) { if (k & 1) { base *= A; base.shrink(deg); } A *= A; A.shrink(); k >>= 1; } } ModTools mt(1e6); // 参考:https://yukicoder.me/submissions/420416 // from baitoさん // 多項式の冪乗を高速化 // 閉区間 sigma x^(0~r) = (1-x^(r+1)) / (1-x) // N乗はcombinationで分かる // 等比数列の和の公式より (0~rは r+1乗になる) // Σx^(0~r) = (1-x^(r+1)) / (1-x) // (1-x^r)^nを返す template FPS pow_term2(int r, int n, int msize) { FPS res(msize+1); rep(i, n+1) { if (i*r <= msize) { res[i*r] = mt.nCr(n, i); if (i & 1) res[i*r] = -res[i*r]; } } return res; } // (x^l-x^r)^n template FPS pow_term2(int l, int r, int n, int msize) { FPS res = pow_term2(r-l, n, msize); // (x^l)^n * (1-x^(r-l))^n assert(l*n < 1e9); res = res << l*n; if (res.size() > msize+1) res.resize(msize+1); return res; } // (1-x)^n template FPS pow_term2(int n, int msize) { return pow_term2(1, n, msize); } // 1/(1-rx)^nを返す [x^i]f = nhi * r^i template FPS pow_term2_inv(int r, int n, int msize) { FPS res(msize+1); if (r == 1) { for (int i = 0; i < msize+1; i++) res[i] = mt.nHr(n, i); return res; } T rb = 1; for (int i = 0; i FPS pow_term2_inv(int n, int msize) { return pow_term2_inv(1, n, msize); } void solve() { ll N, M, D1, D2; cin >> N >> M >> D1 >> D2; // 等比数列の和で式変形して、2項の式にしてから冪乗する // F = x / (1-x) // G^(N-1) = (x^d1)^(N-1)*(1-x^(d2-d1+1))^(N-1) / (1-x)^(N-1) FPS F = pow_term2(D2-D1+1, N-1, M+1)*pow_term2_inv(N, M+1); F.shrink(); vector> tmp = {{D1*(N-1)+1, 1}}; F *= tmp; F.shrink(M+1); mint ans = sum(F); print(ans); } int main() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(15); // single test case solve(); // multi test cases // int T; // cin >> T; // while (T--) solve(); return 0; }