bool TEST = false; using namespace std; #include #include #define rep(i,n) for(ll (i)=0;(i)<(ll)(n);i++) #define rrep(i,n) for(ll (i)=(ll)(n)-1;(i)>=0;i--) #define range(i,start,end,step) for(ll (i)=start;(i)<(ll)(end);(i)+=(step)) #define rrange(i,start,end,step) for(ll (i)=start;(i)>(ll)(end);(i)+=(step)) #define dump(x) cerr << "Line " << __LINE__ << ": " << #x << " = " << (x) << "\n"; #define spa << " " << #define fi first #define se second #define all(a) (a).begin(),(a).end() #define allr(a) (a).rbegin(),(a).rend() using ld = long double; using ll = long long; using ull = unsigned long long; using pii = pair; using pll = pair; using pdd = pair; template using V = vector; template using VV = V>; template using P = pair; template using M = map; template using S = set; template using UM = unordered_map; template using PQ = priority_queue, greater>; template using rPQ = priority_queue, less>; templatevector make_vec(size_t a){return vector(a);} templateauto make_vec(size_t a, Ts... ts){return vector(ts...))>(a, make_vec(ts...));} template ostream& operator << (ostream& os, const pair v){os << "(" << v.first << ", " << v.second << ")"; return os;} template ostream& operator<<(ostream &os, const vector &v) { for (auto &e : v) os << e << ' '; return os; } template ostream& operator<<(ostream& os, const vector> &v){ for(auto &e : v){os << e << "\n";} return os;} struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; template void UNIQUE(vector &x) {sort(all(x));x.erase(unique(all(x)), x.end());} template bool chmax(T &a, const T &b) { if (a bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; } void fail() { cout << -1 << '\n'; exit(0); } inline int popcount(const int x) { return __builtin_popcount(x); } inline int popcount(const ll x) { return __builtin_popcountll(x); } template void debug(vector>&v){for(ll i=0;i void debug(vector&v){if(v.size()!=0)cerr< void debug(priority_queue&v){V vals; while(!v.empty()) {cerr << v.top() << " "; vals.push_back(v.top()); v.pop();} cerr<<"\n"; for(auto val: vals) v.push(val);} template void debug(map&v){for(auto [k,v]: v) cerr << k spa v << "\n"; cerr<<"\n";} template void debug(unordered_map&v){for(auto [k,v]: v) cerr << k spa v << "\n";cerr<<"\n";} V listrange(int n) {V res(n); rep(i,n) res[i]=i; return res;} template P divmod(T a, T b) {return make_pair(a/b, a%b);} const ll INF = (1ll<<62); // const ld EPS = 1e-10; // const ld PI = acos(-1.0); template< typename Mint > struct NumberTheoreticTransformFriendlyModInt { static vector< Mint > dw, idw; static int max_base; static Mint root; NumberTheoreticTransformFriendlyModInt() = default; static void init() { if(dw.empty()) { const unsigned mod = Mint::get_mod(); assert(mod >= 3 && mod % 2 == 1); auto tmp = mod - 1; max_base = 0; while(tmp % 2 == 0) tmp >>= 1, max_base++; root = 2; while(root.pow((mod - 1) >> 1) == 1) root += 1; assert(root.pow(mod - 1) == 1); dw.resize(max_base); idw.resize(max_base); for(int i = 0; i < max_base; i++) { dw[i] = -root.pow((mod - 1) >> (i + 2)); idw[i] = Mint(1) / dw[i]; } } } static void ntt(vector< Mint > &a) { init(); const int n = (int) a.size(); assert((n & (n - 1)) == 0); assert(__builtin_ctz(n) <= max_base); for(int m = n; m >>= 1;) { Mint w = 1; for(int s = 0, k = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; ++i, ++j) { auto x = a[i], y = a[j] * w; a[i] = x + y, a[j] = x - y; } w *= dw[__builtin_ctz(++k)]; } } } static void intt(vector< Mint > &a, bool f = true) { init(); const int n = (int) a.size(); assert((n & (n - 1)) == 0); assert(__builtin_ctz(n) <= max_base); for(int m = 1; m < n; m *= 2) { Mint w = 1; for(int s = 0, k = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; ++i, ++j) { auto x = a[i], y = a[j]; a[i] = x + y, a[j] = (x - y) * w; } w *= idw[__builtin_ctz(++k)]; } } if(f) { Mint inv_sz = Mint(1) / n; for(int i = 0; i < n; i++) a[i] *= inv_sz; } } static vector< Mint > multiply(vector< Mint > a, vector< Mint > b) { int need = a.size() + b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; int sz = 1 << nbase; a.resize(sz, 0); b.resize(sz, 0); ntt(a); ntt(b); Mint inv_sz = Mint(1) / sz; for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz; intt(a, false); a.resize(need); return a; } }; template< typename Mint > vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::dw = vector< Mint >(); template< typename Mint > vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::idw = vector< Mint >(); template< typename Mint > int NumberTheoreticTransformFriendlyModInt< Mint >::max_base = 0; template< typename Mint > Mint NumberTheoreticTransformFriendlyModInt< Mint >::root = Mint(); template< typename T > struct FormalPowerSeriesFriendlyNTT : vector< T > { using vector< T >::vector; using P = FormalPowerSeriesFriendlyNTT; using NTT = NumberTheoreticTransformFriendlyModInt< T >; P pre(int deg) const { return P(begin(*this), begin(*this) + min((int) this->size(), deg)); } P rev(int deg = -1) const { P ret(*this); if(deg != -1) ret.resize(deg, T(0)); reverse(begin(ret), end(ret)); return ret; } void shrink() { while(this->size() && this->back() == T(0)) this->pop_back(); } P operator+(const P &r) const { return P(*this) += r; } P operator+(const T &v) const { return P(*this) += v; } P operator-(const P &r) const { return P(*this) -= r; } P operator-(const T &v) const { return P(*this) -= v; } P operator*(const P &r) const { return P(*this) *= r; } P operator*(const T &v) const { return P(*this) *= v; } P operator/(const P &r) const { return P(*this) /= r; } P operator%(const P &r) const { return P(*this) %= r; } P &operator+=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] += r[i]; return *this; } P &operator-=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i]; return *this; } // https://judge.yosupo.jp/problem/convolution_mod P &operator*=(const P &r) { if(this->empty() || r.empty()) { this->clear(); return *this; } auto ret = NTT::multiply(*this, r); return *this = {begin(ret), end(ret)}; } P &operator/=(const P &r) { if(this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n); } P &operator%=(const P &r) { *this -= *this / r * r; shrink(); return *this; } // https://judge.yosupo.jp/problem/division_of_polynomials pair< P, P > div_mod(const P &r) { P q = *this / r; P x = *this - q * r; x.shrink(); return make_pair(q, x); } P operator-() const { P ret(this->size()); for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i]; return ret; } P &operator+=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] += r; return *this; } P &operator-=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] -= r; return *this; } P &operator*=(const T &v) { for(int i = 0; i < this->size(); i++) (*this)[i] *= v; return *this; } P dot(P r) const { P ret(min(this->size(), r.size())); for(int i = 0; i < ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } P operator>>(int sz) const { if(this->size() <= sz) return {}; P ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } P operator<<(int sz) const { P ret(*this); ret.insert(ret.begin(), sz, T(0)); return ret; } T operator()(T x) const { T r = 0, w = 1; for(auto &v : *this) { r += w * v; w *= x; } return r; } P diff() const { const int n = (int) this->size(); P ret(max(0, n - 1)); for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i); return ret; } P integral() const { const int n = (int) this->size(); P ret(n + 1); ret[0] = T(0); for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1); return ret; } // https://judge.yosupo.jp/problem/inv_of_formal_power_series // F(0) must not be 0 P inv(int deg = -1) const { assert(((*this)[0]) != T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; P res(deg); res[0] = {T(1) / (*this)[0]}; for(int d = 1; d < deg; d <<= 1) { P f(2 * d), g(2 * d); for(int j = 0; j < min(n, 2 * d); j++) f[j] = (*this)[j]; for(int j = 0; j < d; j++) g[j] = res[j]; NTT::ntt(f); NTT::ntt(g); f = f.dot(g); NTT::intt(f); for(int j = 0; j < d; j++) f[j] = 0; NTT::ntt(f); for(int j = 0; j < 2 * d; j++) f[j] *= g[j]; NTT::intt(f); for(int j = d; j < min(2 * d, deg); j++) res[j] = -f[j]; } return res; } // https://judge.yosupo.jp/problem/log_of_formal_power_series // F(0) must be 1 P log(int deg = -1) const { assert((*this)[0] == T(1)); const int n = (int) this->size(); if(deg == -1) deg = n; return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } // https://judge.yosupo.jp/problem/sqrt_of_formal_power_series P sqrt(int deg = -1, const function< T(T) > &get_sqrt = [](T) { return T(1); }) const { const int n = (int) this->size(); if(deg == -1) deg = n; if((*this)[0] == T(0)) { for(int i = 1; i < n; i++) { if((*this)[i] != T(0)) { if(i & 1) return {}; if(deg - i / 2 <= 0) break; auto ret = (*this >> i).sqrt(deg - i / 2, get_sqrt); if(ret.empty()) return {}; ret = ret << (i / 2); if(ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return P(deg, 0); } auto sqr = T(get_sqrt((*this)[0])); if(sqr * sqr != (*this)[0]) return {}; P ret{sqr}; T inv2 = T(1) / T(2); for(int i = 1; i < deg; i <<= 1) { ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2; } return ret.pre(deg); } P sqrt(const function< T(T) > &get_sqrt, int deg = -1) const { return sqrt(deg, get_sqrt); } // https://judge.yosupo.jp/problem/exp_of_formal_power_series // F(0) must be 0 P exp(int deg = -1) const { if(deg == -1) deg = this->size(); assert((*this)[0] == T(0)); P inv; inv.reserve(deg + 1); inv.push_back(T(0)); inv.push_back(T(1)); auto inplace_integral = [&](P &F) -> void { const int n = (int) F.size(); auto mod = T::get_mod(); while((int) inv.size() <= n) { int i = inv.size(); inv.push_back((-inv[mod % i]) * (mod / i)); } F.insert(begin(F), T(0)); for(int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_diff = [](P &F) -> void { if(F.empty()) return; F.erase(begin(F)); T coeff = 1, one = 1; for(int i = 0; i < (int) F.size(); i++) { F[i] *= coeff; coeff += one; } }; P b{1, 1 < (int) this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for(int m = 2; m < deg; m *= 2) { auto y = b; y.resize(2 * m); NTT::ntt(y); z1 = z2; P z(m); for(int i = 0; i < m; ++i) z[i] = y[i] * z1[i]; NTT::intt(z); fill(begin(z), begin(z) + m / 2, T(0)); NTT::ntt(z); for(int i = 0; i < m; ++i) z[i] *= -z1[i]; NTT::intt(z); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(2 * m); NTT::ntt(z2); P x(begin(*this), begin(*this) + min< int >(this->size(), m)); inplace_diff(x); x.push_back(T(0)); NTT::ntt(x); for(int i = 0; i < m; ++i) x[i] *= y[i]; NTT::intt(x); x -= b.diff(); x.resize(2 * m); for(int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = T(0); NTT::ntt(x); for(int i = 0; i < 2 * m; ++i) x[i] *= z2[i]; NTT::intt(x); x.pop_back(); inplace_integral(x); for(int i = m; i < min< int >(this->size(), 2 * m); ++i) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, T(0)); NTT::ntt(x); for(int i = 0; i < 2 * m; ++i) x[i] *= y[i]; NTT::intt(x); b.insert(end(b), begin(x) + m, end(x)); } return P{begin(b), begin(b) + deg}; } // https://judge.yosupo.jp/problem/pow_of_formal_power_series P pow(int64_t k, int deg = -1) const { const int n = (int) this->size(); if(deg == -1) deg = n; for(int i = 0; i < n; i++) { if((*this)[i] != T(0)) { T rev = T(1) / (*this)[i]; P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k)); if(i * k > deg) return P(deg, T(0)); ret = (ret << (i * k)).pre(deg); if(ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return *this; } P mod_pow(int64_t k, P g) const { P modinv = g.rev().inv(); auto get_div = [&](P base) { if(base.size() < g.size()) { base.clear(); return base; } int n = base.size() - g.size() + 1; return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n); }; P x(*this), ret{1}; while(k > 0) { if(k & 1) { ret *= x; ret -= get_div(ret) * g; ret.shrink(); } x *= x; x -= get_div(x) * g; x.shrink(); k >>= 1; } return ret; } // https://judge.yosupo.jp/problem/polynomial_taylor_shift P taylor_shift(T c) const { int n = (int) this->size(); vector< T > fact(n), rfact(n); fact[0] = rfact[0] = T(1); for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i); rfact[n - 1] = T(1) / fact[n - 1]; for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i); P p(*this); for(int i = 0; i < n; i++) p[i] *= fact[i]; p = p.rev(); P bs(n, T(1)); for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1]; p = (p * bs).pre(n); p = p.rev(); for(int i = 0; i < n; i++) p[i] *= rfact[i]; return p; } }; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; const int mod = 998244353; using MOD = ModInt; using FPS = FormalPowerSeriesFriendlyNTT; // usage: // FPS< mint > f, g; // f.reserve(s+1); // g.reserve(s+1); // rep(j,s+1) { // f.emplace_back(dpa[i][j]); // g.emplace_back(dpb[n-i][j]); // } // auto h = f*g; void Main(){ ll n; cin >> n; V a(n); FPS g(n-1); rep(i,n) { cin >> a[i]; } rrep(i,n) g.emplace_back(a[i]); using PI = P; V fs; priority_queue, greater> q; ll keta = 1; rep(i,n-1) { FPS f(2); f[0] = MOD(10).pow(keta); f[1] = 1; fs.push_back(f); q.push(make_pair(1,i)); keta *= 2; keta %= (mod-1); } // debug(fs); // reverse(all(a)); while (q.size()>=2) { auto [s,i] = q.top(); q.pop(); auto [t,j] = q.top(); q.pop(); fs[i] = fs[i] * fs[j]; q.push(make_pair(fs[i].size(), i)); // cout << i spa j spa fs[i].size() << endl; } auto [s,i] = q.top(); // assert(s==n-1); auto f = fs[i]; auto h = f*g; // debug(f); V ans(n); rep(i,h.size()) { ans[i%n] += h[i]; } rrep(i,n-1) cout << ans[i] << "\n"; cout << ans[n-1] << "\n"; } int main(void){ std::ifstream in("tmp_in"); if (TEST) { std::cin.rdbuf(in.rdbuf()); std::cout << std::fixed << std::setprecision(15); } else { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(15); } Main(); }