def solve(io) n, m = io.get(Int64, Int32) a = io.get_a(m, Int64) b = [{0_i64, 0}] + a.map_with_index { |ai, i| {ai, i+1} } st = SegmentTree.new(b, :max, {0_i64, 0}) q = io.get q.times do ti, xi, yi = io.get(Int32, Int32, Int64) case ti when 1 c = st[xi] st[xi] = {c[0]+yi, c[1]} when 2 c = st[xi] st[xi] = {c[0]-yi, c[1]} when 3 c = st[0..-1] io.put c[1] end end end record Pair, v : Int32, a : Int64 class ProconIO def initialize(@ins : IO = STDIN, @outs : IO = STDOUT) @buf = IO::Memory.new("") end def get(k : T.class = Int32) forall T get_v(k) end macro define_get {% for i in (2..9) %} def get({{ *(1..i).map { |j| "k#{j}".id } }}) { {{ *(1..i).map { |j| "get(k#{j})".id } }} } end {% end %} end define_get macro define_getn {% for i in (2..9) %} def get{{i}}(k : T.class = Int32) forall T get({{ *(1..i).map { "k".id } }}) end {% end %} end define_getn def get_a(n : Int, k : T.class = Int32) forall T Array.new(n) { get_v(k) } end def get_c(n : Int, k : T.class = Int32) forall T get_a(n, k) end macro define_get_t {% for i in (2..9) %} def get_t(n : Int, {{ *(1..i).map { |j| "k#{j}".id } }}) Array.new(n) { get({{ *(1..i).map { |j| "k#{j}".id } }}) } end {% end %} end define_get_t macro define_getn_t {% for i in (2..9) %} def get{{i}}_t(n : Int, k : T.class = Int32) forall T get_t(n, {{ *(1..i).map { "k".id } }}) end {% end %} end define_getn_t macro define_get_c {% for i in (2..9) %} def get_c(n : Int, {{ *(1..i).map { |j| "k#{j}".id } }}) a = get_t(n, {{ *(1..i).map { |j| "k#{j}".id } }}) { {{ *(1..i).map { |j| "a.map { |e| e[#{j-1}] }".id } }} } end {% end %} end define_get_c macro define_getn_c {% for i in (2..9) %} def get{{i}}_c(n : Int, k : T.class = Int32) forall T get_c(n, {{ *(1..i).map { "k".id } }}) end {% end %} end define_getn_c def get_m(r : Int, c : Int, k : T.class = Int32) forall T Array.new(r) { get_a(c, k) } end def put(*v) @outs.puts(*v) end def put_e(*v) put(*v) exit end def put_a(*v) put_d(*v, delimiter: ' ') end def put_ae(*v) put_a(*v) exit end def put_c(*v) put_d(*v, delimiter: '\n') end def put_ce(*v) put_c(*v) exit end def put_d(*v, delimiter) v.each_with_index do |vi, i| vi.each_with_index do |vij, j| @outs.print vij @outs.print delimiter if j < vi.size - 1 end @outs.print delimiter if i < v.size - 1 end @outs.puts end private def get_v(k : String.class); get_token; end private def get_v(k : Int32.class); get_token.to_i32; end private def get_v(k : Int64.class); get_token.to_i64; end private def get_token loop do token = @buf.gets(' ', chomp: true) break token unless token.nil? @buf = IO::Memory.new(@ins.read_line) end end end macro min_u(a, b) {{a}} = { {{a}}, {{b}} }.min end macro max_u(a, b) {{a}} = { {{a}}, {{b}} }.max end macro records(rec, a) {{a}}.map { |v| {{rec}}.new(*v) } end struct Number {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "1.1.0") < 0 %} def zero? self == 0 end def positive? self > 0 end def negative? self < 0 end {% end %} {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "0.36.0") < 0 %} def self.additive_identity zero end def self.multiplicative_identity new(1) end {% end %} end struct Int def cdiv(b : Int) (self + b - 1) // b end def bit?(i : Int) bit(i) == 1 end def set_bit(i : Int) self | (self.class.new(1) << i) end def reset_bit(i : Int) self & ~(self.class.new(1) << i) end {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "0.35.0") < 0 %} def digits(base = 10) raise ArgumentError.new("Invalid base #{base}") if base < 2 raise ArgumentError.new("Can't request digits of negative number") if self < 0 return [0] if self == 0 num = self digits_count = (Math.log(self.to_f + 1) / Math.log(base)).ceil.to_i ary = Array(Int32).new(digits_count) while num != 0 ary << num.remainder(base).to_i num = num.tdiv(base) end ary end {% end %} {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "0.34.0") < 0 %} def bit_length : Int32 x = self < 0 ? ~self : self if x.is_a?(Int::Primitive) Int32.new(sizeof(self) * 8 - x.leading_zeros_count) else to_s(2).size end end {% end %} end class Array macro new_md(*args, &block) {% if !block %} {% for arg, i in args[0...-2] %} Array.new({{arg}}) { {% end %} Array.new({{args[-2]}}, {{args[-1]}}) {% for arg in args[0...-2] %} } {% end %} {% else %} {% for arg, i in args %} Array.new({{arg}}) { |_i{{i}}| {% end %} {% for block_arg, i in block.args %} {{block_arg}} = _i{{i}} {% end %} {{block.body}} {% for arg in args %} } {% end %} {% end %} end end module Math {% if compare_versions(env("CRYSTAL_VERSION") || "0.0.0", "1.2.0") < 0 %} def isqrt(value : Int::Primitive) raise ArgumentError.new "Input must be non-negative integer" if value < 0 return value if value < 2 res = value.class.zero bit = res.succ << (res.leading_zeros_count - 2) bit >>= value.leading_zeros_count & ~0x3 while (bit != 0) if value >= res + bit value -= res + bit res = (res >> 1) + bit else res >>= 1 end bit >>= 2 end res end {% end %} end module Binary(T) extend self def get(op : Symbol) : (T, T) -> T case op when :+ then return ->add(T, T) when :* then return ->mul(T, T) when :min then return ->min(T, T) when :max then return ->max(T, T) end raise ArgumentError.new("not supported operator") end def add(a : T, b : T) : T if a.responds_to?(:+) r = a + b return r if r.is_a?(T) end raise NotImplementedError.new("this type does not support '+'") end def mul(a : T, b : T) : T if a.responds_to?(:*) r = a * b return r if r.is_a?(T) end raise NotImplementedError.new("this type does not support '*'") end def min(a : T, b : T) : T if a.responds_to?(:<=>) r = Math.min(a, b) return r if r.is_a?(T) end raise NotImplementedError.new("this type does not support 'min'") end def max(a : T, b : T) : T if a.responds_to?(:<=>) r = Math.max(a, b) return r if r.is_a?(T) end raise NotImplementedError.new("this type does not support 'max'") end end class SegmentTree(T) def initialize(@n : Int32, @init : T = T.zero, &@compose : (T, T) -> T) @an = 1 << (@n - 1).bit_length @buf = Array.new(@an << 1, @init) init_propagate end def initialize(b : Array(T), @init : T = T.zero, &@compose : (T, T) -> T) @n = b.size @an = 1 << (@n - 1).bit_length @buf = Array.new(@an << 1, @init) @buf[@an, @n] = b init_propagate end def initialize(@n : Int32, op : Symbol, @init : T = T.zero) initialize(@n, @init, &Binary(T).get(op)) end def initialize(b : Array(T), op : Symbol, @init : T = T.zero) initialize(b, @init, &Binary(T).get(op)) end def [](i : Int) @buf[i + @an] end def [](start : Int, count : Int) l, r = start + @an, start + count + @an r1 = r2 = @init while l != r if l.odd? r1 = @compose.call(r1, @buf[l]) l += 1 end if r.odd? r -= 1 r2 = @compose.call(@buf[r], r2) end l >>= 1 r >>= 1 end @compose.call(r1, r2) end def [](r : Range) sc = Indexable.range_to_index_and_count(r, @n) raise ArgumentError.new("Invalid range") if sc.nil? self[*sc] end def []=(i : Int, v : T) @buf[i + @an] = v propagate(i + @an) end @an : Int32 @buf : Array(T) private def init_propagate (1...@an).reverse_each do |i| @buf[i] = @compose.call(@buf[i << 1], @buf[i << 1 | 1]) end end private def propagate(i : Int) while (i >>= 1) > 0 @buf[i] = @compose.call(@buf[i << 1], @buf[i << 1 | 1]) end end end solve(ProconIO.new)