""" 積 """ def product_modulo(*X): y=1 for x in X: y=(x*y)%Mod return y """ 階乗 """ def Factor(N): """ 0!, 1!, ..., N! (mod Mod) を出力する. N: int """ F=[1]*(N+1) for k in range(1,N+1): F[k]=(k*F[k-1])%Mod return F def Factor_with_inverse(N): """ 0!, 1!, ..., N!, (0!)^-1, (1!)^-1, ..., (N!)^-1 を出力する. N: int """ F=Factor(N) G=[1]*(N+1); G[-1]=pow(F[-1],Mod-2,Mod) for k in range(N-1,-1,-1): G[k]=((k+1)*G[k+1])%Mod return F,G """ 組み合わせの数 Factor_with_inverse で F, G を既に求めていることが前提 """ def nCr(n,r): """ nCr (1,2,...,n から相異なる r 個の整数を選ぶ方法) を求める. n,r: int """ if 0<=r<=n: return F[n]*(G[r]*G[n-r]%Mod)%Mod else: return 0 #================================================== H,W=map(int,input().split()) Mod=10**9+7 F,G=Factor_with_inverse(H) TWO=[1]*(H+1) for p in range(1,H+1): TWO[p]=2*TWO[p-1]%Mod Ans=0 sign=1 for p in range(H): Ans+=product_modulo(nCr(H,p), sign, pow(TWO[H-p]-1,W,Mod)) Ans%=Mod sign*=-1 print(Ans)