#include #include #include #include #include #include #include #include #include #define _USE_MATH_DEFINES #include #include #include using namespace std; #define rep(i, x) for (ll i = 0; i < x; ++i) #define repn(i, x) for (ll i = 1; i <= x; ++i) using ll = long long; const ll INF = 1e17; const ll MOD = 1000000007; const ll MAX = 4000001; const long double eps = 1E-14; ll max(ll a, ll b) { if (a > b) { return a; } return b; } ll min(ll a, ll b) { if (a > b) { return b; } return a; } ll gcd(ll a, ll b) { if (b == 0) { return a; } if (a < b) { return gcd(b, a); } return gcd(b, a % b); } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } using vll = vector; using vvll = vector>; using vvvll = vector>>; /////////////////////////////////////////////////////////////////// inline long long mod(long long a, long long m) { return (a % m + m) % m; } long long extGcd(long long a, long long b, long long &p, long long &q) { if (b == 0) { p = 1; q = 0; return a; } long long d = extGcd(b, a % b, q, p); q -= a / b * p; return d; } // 中国剰余定理 // リターン値を (r, m) とすると解は x ≡ r (mod. m) // 解なしの場合は (0, -1) をリターン pair ChineseRem(const vector &b, const vector &m) { long long r = 0, M = 1; for (int i = 0; i < (int)b.size(); ++i) { long long p, q; long long d = extGcd(M, m[i], p, q); // p is inv of M/d (mod. m[i]/d) if ((b[i] - r) % d != 0) return make_pair(0, -1); long long tmp = (b[i] - r) / d * p % (m[i] / d); r += M * tmp; M *= m[i] / d; } return make_pair(mod(r, M), M); } int main() { vll x(3), y(3); rep(i, 3) { cin >> x.at(i) >> y.at(i); } pair res = ChineseRem(x, y); if (res.second == -1) { cout << -1 << endl; } else { cout << res.first << endl; } }