#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; typedef long long ll; typedef vector vl; typedef vector> vvl; typedef pair P; #define rep(i, n) for(ll i = 0; i < n; i++) #define exrep(i, a, b) for(ll i = a; i <= b; i++) #define out(x) cout << x << endl #define exout(x) printf("%.10f\n", x) #define chmax(x, y) x = max(x, y) #define chmin(x, y) x = min(x, y) #define all(a) a.begin(), a.end() #define rall(a) a.rbegin(), a.rend() #define pb push_back #define re0 return 0 const ll mod = 998244353; const ll INF = 1e16; struct Eratosthenes { vl isprime; // isprime[i] : iが素数なら1 vl minfactor; // minfactor[i] : iを割り切る最小の素数 vl mobius; // mobius[i] : メビウス関数 μ(i) Eratosthenes(ll n) : isprime(n+1, 1), minfactor(n+1, -1), mobius(n+1, 1) { isprime[1] = 0; minfactor[1] = 1; exrep(p, 2, n) { if(!isprime[p]) { continue; } minfactor[p] = p; mobius[p] = -1; for(ll q = 2*p; q <= n; q += p) { isprime[q] = 0; if(minfactor[q] == -1) { minfactor[q] = p; } if((q / p) % p == 0) { mobius[q] = 0; } else { mobius[q] = -mobius[q]; } } } } // 高速素因数分解。O(log(n))でnを素因数分解する vector

factorize(ll n) { // (素因数, 指数) のvectorを返す vector

res; while(n > 1) { ll p = minfactor[n]; ll i = 0; while(minfactor[n] == p) { n /= p; i++; } res.emplace_back(make_pair(p, i)); } return res; } // 高速約数列挙。O(σ(n))でnの約数を求める。σ(n)はnの約数の個数 vl divisors(ll n) { vl res({1}); auto pf = factorize(n); for(auto p : pf) { ll s = res.size(); rep(i, s) { ll x = 1; rep(j, p.second) { x *= p.first; res.pb(res[i] * x); } } } return res; } }; // エラトステネスの篩。計算量はO(n*loglog(n)) vl Eratosthenes1(ll n) { vl isprime(n+1, 1); isprime[1] = 0; exrep(p, 2, n) { if(!isprime[p]) { continue; } for(ll q = 2*p; q <= n; q += p) { isprime[q] = 0; } } return isprime; } // 約数系高速ゼータ変換。計算量はO(n*loglog(n)) template void fast_zeta(vector &f) { ll n = f.size(); vl isprime = Eratosthenes1(n); exrep(p, 2, n-1) { if(!isprime[p]) { continue; } for(ll k = 1; k <= (n - 1) / p; k++) { f[k * p] += f[k]; f[k * p] %= mod; } } } // 約数系高速メビウス変換。計算量はO(n*loglog(n)) template void fast_mobius(vector &F) { ll n = F.size(); vl isprime = Eratosthenes1(n); exrep(p, 2, n-1) { if(!isprime[p]) { continue; } for(ll k = (n - 1) / p; k >= 1; k--) { F[k * p] += mod - F[k]; F[k * p] %= mod; } } } // LCM畳み込み。計算量はO(n*loglog(n)) template vector lcm_convolution(const vector &f, const vector &g) { ll n = 200010; // 配列の最大値を設定する vector F(n), G(n), H(n); rep(i, f.size()) { F[i] = f[i]; } rep(i, g.size()) { G[i] = g[i]; } fast_zeta(F); fast_zeta(G); exrep(i, 1, n-1) { H[i] = F[i] * G[i] % mod; } fast_mobius(H); return H; } const ll MAX = 5; ll inv[MAX]; // inv[i] : iの逆数のmod void init() { inv[0] = inv[1] = 1; for(ll i = 1; i < MAX; i++) { if(i >= 2) { inv[i] = mod - inv[mod % i] * (mod / i) % mod; } } } // a^n (mod.MOD)を求める。計算量はO(logn) ll modpow(ll a, ll n, ll MOD = mod) { if(n == 0) { return 1; } if(n % 2 == 1) { return a * modpow(a, n-1, MOD) % MOD; } return modpow(a, n/2, MOD) * modpow(a, n/2, MOD) % MOD; } int main() { ll n; cin >> n; init(); Eratosthenes e(n+1); ll m = 0; exrep(i, 1, n) { m += e.mobius[i]; m %= mod; } vl a(n+1); exrep(i, 1, n) { a[i] = e.mobius[i] * modpow(2LL, n / i) % mod; } ll x = 0; exrep(i, 1, n) { x += a[i]; x %= mod; } vl b = lcm_convolution(a, a); ll y = 0; exrep(i, 1, n) { y += b[i]; y %= mod; } ll z = 0; exrep(i, 1, n) { z += b[i] * modpow(3 * inv[4] % mod, n / i); z %= mod; } ll ans = (m * m + x * x + z + 2*mod - y - 2 * m * x % mod) % mod; out(ans); re0; }