#include #pragma GCC optimize("Ofast") #define _GLIBCXX_DEBUG using namespace std; using std::cout; using std::cin; using std::endl; using ll=long long; using ld=long double; ll ILL=1167167167167167167; const int INF=2100000000; const ll mod=1e9+7; #define rep(i,a) for (ll i=0;i using _pq = priority_queue, greater>; template ll LB(vector &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();} template ll UB(vector &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();} template bool chmin(T &a,const T &b){if(a>b){a=b;return 1;}else return 0;} template bool chmax(T &a,const T &b){if(a void So(vector &v) {sort(v.begin(),v.end());} template void Sore(vector &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});} void yneos(bool a){if(a) cout<<"YES\n"; else cout<<"NO\n";} //最大公約数 long long Gcd(long long a,long long b){ if(b==0) return a; else return Gcd(b,a%b); } //最小公倍数 long long Lcm(long long a,long long b){ return (a/Gcd(a,b))*b; } //カーマイケル数の出力 long long carmichael(long long a){ long long ans=1,A=1; //2を素因数に持つときだけ場合わけ while(a%2==0) A*=2,a/=2; if(A==4) ans=2; else if(A>4) ans=A/4; A=a; for(long long k=3;k*k<=a;k++){ //for(auto k:div){ //配列divをsqrt(a)以下の素数を全列挙するやつにする if(A%k==0){ long long B=k-1; A/=k; while(A%k==0) A/=k,B*=k; ans=Lcm(ans,B); } } if(A!=1) ans=Lcm(ans,A-1); return ans; } //Nの正の約数を列挙する vector Divisors(long long N){ vector p,q; long long i=1,K=0; while(i*i=0;i--){ p.push_back(q[i]); } return p; } ll jyo(ll x,ll y,ll z){ ll H=y; //ここから ll a=1,b=x%z,c=1; while(H>0){ a*=2; if(H%a!=0){ H-=a/2; c*=b; c%=z; } b*=b; b%=z; } //ここまで return c; } void solve(); // oddloop int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int t=1; cin>>t; rep(i,t) solve(); } void solve(){ ll N; cin>>N; if(N==1){ cout<<"1\n"; return ; } ll C=carmichael(2*N-1); auto p=Divisors(C); for(auto x:p){ if(jyo(2,x,2*N-1)==1){ cout<