import math class FibonacciHeap: # internal node class class Node: def __init__(self, key, value): self.key = key self.value = value self.parent = self.child = self.left = self.right = None self.degree = 0 self.mark = False # function to iterate through a doubly linked list def iterate(self, head): node = stop = head flag = False while True: if node == stop and flag is True: break elif node == stop: flag = True yield node node = node.right # pointer to the head and minimum node in the root list root_list, min_node = None, None # maintain total node count in full fibonacci heap total_nodes = 0 # return min node in O(1) time def find_min(self): return self.min_node # extract (delete) the min node from the heap in O(log n) time # amortized cost analysis can be found here (http://bit.ly/1ow1Clm) def extract_min(self): z = self.min_node if z is not None: if z.child is not None: # attach child nodes to root list children = [x for x in self.iterate(z.child)] for i in range(0, len(children)): self.merge_with_root_list(children[i]) children[i].parent = None self.remove_from_root_list(z) # set new min node in heap if z == z.right: self.min_node = self.root_list = None else: self.min_node = z.right self.consolidate() self.total_nodes -= 1 return z # insert new node into the unordered root list in O(1) time # returns the node so that it can be used for decrease_key later def insert(self, key, value=None): n = self.Node(key, value) n.left = n.right = n self.merge_with_root_list(n) if self.min_node is None or n.key < self.min_node.key: self.min_node = n self.total_nodes += 1 return n # modify the key of some node in the heap in O(1) time def decrease_key(self, x, k): if k > x.key: return None x.key = k y = x.parent if y is not None and x.key < y.key: self.cut(x, y) self.cascading_cut(y) if x.key < self.min_node.key: self.min_node = x # merge two fibonacci heaps in O(1) time by concatenating the root lists # the root of the new root list becomes equal to the first list and the second # list is simply appended to the end (then the proper min node is determined) def merge(self, h2): H = FibonacciHeap() H.root_list, H.min_node = self.root_list, self.min_node # fix pointers when merging the two heaps last = h2.root_list.left h2.root_list.left = H.root_list.left H.root_list.left.right = h2.root_list H.root_list.left = last H.root_list.left.right = H.root_list # update min node if needed if h2.min_node.key < H.min_node.key: H.min_node = h2.min_node # update total nodes H.total_nodes = self.total_nodes + h2.total_nodes return H # if a child node becomes smaller than its parent node we # cut this child node off and bring it up to the root list def cut(self, x, y): self.remove_from_child_list(y, x) y.degree -= 1 self.merge_with_root_list(x) x.parent = None x.mark = False # cascading cut of parent node to obtain good time bounds def cascading_cut(self, y): z = y.parent if z is not None: if y.mark is False: y.mark = True else: self.cut(y, z) self.cascading_cut(z) # combine root nodes of equal degree to consolidate the heap # by creating a list of unordered binomial trees def consolidate(self): A = [None] * int(math.log(self.total_nodes) * 2) nodes = [w for w in self.iterate(self.root_list)] for w in range(0, len(nodes)): x = nodes[w] d = x.degree while A[d] != None: y = A[d] if x.key > y.key: temp = x x, y = y, temp self.heap_link(y, x) A[d] = None d += 1 A[d] = x # find new min node - no need to reconstruct new root list below # because root list was iteratively changing as we were moving # nodes around in the above loop for i in range(0, len(A)): if A[i] is not None: if A[i].key < self.min_node.key: self.min_node = A[i] # actual linking of one node to another in the root list # while also updating the child linked list def heap_link(self, y, x): self.remove_from_root_list(y) y.left = y.right = y self.merge_with_child_list(x, y) x.degree += 1 y.parent = x y.mark = False # merge a node with the doubly linked root list def merge_with_root_list(self, node): if self.root_list is None: self.root_list = node else: node.right = self.root_list.right node.left = self.root_list self.root_list.right.left = node self.root_list.right = node # merge a node with the doubly linked child list of a root node def merge_with_child_list(self, parent, node): if parent.child is None: parent.child = node else: node.right = parent.child.right node.left = parent.child parent.child.right.left = node parent.child.right = node # remove a node from the doubly linked root list def remove_from_root_list(self, node): if node == self.root_list: self.root_list = node.right node.left.right = node.right node.right.left = node.left # remove a node from the doubly linked child list def remove_from_child_list(self, parent, node): if parent.child == parent.child.right: parent.child = None elif parent.child == node: parent.child = node.right node.right.parent = parent node.left.right = node.right node.right.left = node.left from heapq import heappush, heappop, heapify def MST(n,edge): used=[0]*n f=FibonacciHeap() for c,v in edge[0]: f.insert((c,v)) used[0]=1 ans=0 tmp=1 while tmp