// #include // using namespace atcoder; #include using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define all(x) (x).begin(), (x).end() #define popcnt(x) __builtin_popcount(x) using ll = long long; using pii = pair; using pll = pair; using vi = vector; using vll = vector; using vvi = vector>; using vvll = vector>; const int lim = 1e9; const ll inf = 1e18; int dx[] = {1, 1, 0, -1, -1, -1, 0, 1}; int dy[] = {0, 1, 1, 1, 0, -1, -1, -1}; // const int mod = 1000000007; const int mod = 998244353; struct mint { ll x; // typedef long long ll; mint(ll x = 0) : x((x % mod + mod) % mod) {} mint operator-() const { return mint(-x); } mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod - a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this; } mint operator+(const mint a) const { return mint(*this) += a; } mint operator-(const mint a) const { return mint(*this) -= a; } mint operator*(const mint a) const { return mint(*this) *= a; } mint pow(ll t) const { if (!t) return 1; mint a = pow(t >> 1); a *= a; if (t & 1) a *= *this; return a; } // for prime mod mint inv() const { return pow(mod - 2); } mint& operator/=(const mint a) { return *this *= a.inv(); } mint operator/(const mint a) const { return mint(*this) /= a; } }; istream& operator>>(istream& is, mint& a) { return is >> a.x; } ostream& operator<<(ostream& os, const mint& a) { return os << a.x; } int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } template struct lazy_segtree { public: lazy_segtree() : lazy_segtree(0) {} explicit lazy_segtree(int n) : lazy_segtree(vector(n, e())) {} explicit lazy_segtree(const vector& v) : _n(int(v.size())) { log = ceil_pow2(_n); size = 1 << log; d = vector(2 * size, e()); lz = vector(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int p, F f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template int max_right(int l, G g) { assert(0 <= l && l <= _n); assert(g(e())); if (l == _n) return _n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!g(op(sm, d[l]))) { while (l < size) { push(l); l = (2 * l); if (g(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template int min_left(int r, G g) { assert(0 <= r && r <= _n); assert(g(e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!g(op(d[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (g(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; vector d; vector lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; struct S { ll mn; ll mx; ll val; }; using F = long long; S op(S l, S r) { ll mn = min(l.mn, r.mn); ll mx = max(l.mx, r.mx); ll v = max(max(l.val, r.val), r.mx - l.mn); return S{mn, mx, v}; } S e() { return S{inf, -inf, -inf}; } S mapping(F l, S r) { return S{r.mn + l, r.mx + l, r.val}; } F composition(ll l, ll r) { return l + r; } F id() { return 0LL; } int main() { cin.tie(0); ios::sync_with_stdio(false); int n, q; cin >> n >> q; vll a(n); rep(i, n) cin >> a[i]; lazy_segtree st(n + 1); ll s = 0LL; st.set(0, S{s, s, -inf}); rep(i, n) { s += a[i]; st.set(i + 1, S{s, s, -inf}); } rep(qi, q) { string t; cin >> t; if (t == "set") { int i; ll x; cin >> i >> x; i--; st.apply(i + 1, n + 1, x - a[i]); a[i] = x; } else { int l1, l2, r1, r2; cin >> l1 >> l2 >> r1 >> r2; l1--; r2++; ll s1 = inf, s2 = inf, t2 = -inf, t3 = -inf, ans = -inf; if (l1 < r1) s1 = st.prod(l1, min(l2, r1)).mn; if (l2 < r2) t3 = st.prod(max(l2, r1), r2).mx; int L = max(l1, r1), R = min(l2, r2); if (L < R) { auto ret = st.prod(L, R); s2 = ret.mn; t2 = ret.mx; ans = max(ans, ret.val); } // cout<