#include<bits/stdc++.h> using namespace std; #include <unordered_set> #include <random> //#define int long long #define REP(i,m,n) for(int i=(m);i<(n);i++) #define rep(i,n) REP(i,0,n) #define pb push_back #define all(a) a.begin(),a.end() #define rall(c) (c).rbegin(),(c).rend() #define mp make_pair #define endl '\n' //#define vec vector<ll> //#define mat vector<vector<ll> > #define fi first #define se second #define double long double typedef long long ll; typedef unsigned long long ull; typedef pair<ll,ll> pll; //typedef long double ld; typedef complex<double> Complex; const ll INF=1e9+7; const ll MOD=998244353; const ll inf=INF*INF; const ll mod=MOD; const ll MAX=20000010; const double PI=acos(-1.0); typedef vector<vector<ll> > mat; typedef vector<ll> vec; #include <algorithm> #include <utility> #include <vector> namespace internal { template <class E> struct csr { std::vector<int> start; std::vector<E> elist; csr(int n, const std::vector<std::pair<int, E>>& edges) : start(n + 1), elist(edges.size()) { for (auto e : edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e : edges) { elist[counter[e.first]++] = e.second; } } }; // Reference: // R. Tarjan, // Depth-First Search and Linear Graph Algorithms struct scc_graph { public: scc_graph(int n) : _n(n) {} int num_vertices() { return _n; } void add_edge(int from, int to) { edges.push_back({from, {to}}); } // @return pair of (# of scc, scc id) std::pair<int, std::vector<int>> scc_ids() { auto g = csr<edge>(_n, edges); int now_ord = 0, group_num = 0; std::vector<int> visited, low(_n), ord(_n, -1), ids(_n); visited.reserve(_n); auto dfs = [&](auto self, int v) -> void { low[v] = ord[v] = now_ord++; visited.push_back(v); for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto to = g.elist[i].to; if (ord[to] == -1) { self(self, to); low[v] = std::min(low[v], low[to]); } else { low[v] = std::min(low[v], ord[to]); } } if (low[v] == ord[v]) { while (true) { int u = visited.back(); visited.pop_back(); ord[u] = _n; ids[u] = group_num; if (u == v) break; } group_num++; } }; for (int i = 0; i < _n; i++) { if (ord[i] == -1) dfs(dfs, i); } for (auto& x : ids) { x = group_num - 1 - x; } return {group_num, ids}; } std::vector<std::vector<int>> scc() { auto ids = scc_ids(); int group_num = ids.first; std::vector<int> counts(group_num); for (auto x : ids.second) counts[x]++; std::vector<std::vector<int>> groups(ids.first); for (int i = 0; i < group_num; i++) { groups[i].reserve(counts[i]); } for (int i = 0; i < _n; i++) { groups[ids.second[i]].push_back(i); } return groups; } private: int _n; struct edge { int to; }; std::vector<std::pair<int, edge>> edges; }; } // namespace internal #include <cassert> #include <vector> struct scc_graph { public: scc_graph() : internal(0) {} scc_graph(int n) : internal(n) {} void add_edge(int from, int to) { int n = internal.num_vertices(); assert(0 <= from && from < n); assert(0 <= to && to < n); internal.add_edge(from, to); } std::vector<std::vector<int>> scc() { return internal.scc(); } private: internal::scc_graph internal; }; // namespace atcoder void solve(){ ll n;cin>>n; vector<ll>a(n),b(n); rep(i,n)cin>>a[i]; rep(i,n)cin>>b[i]; vector<ll>c(n); rep(i,n){ c[i]=b[i]; if(i)c[i]^=c[i-1]; } vector<vector<ll> >d(n+1,vector<ll>(2)); d[0][0]=1; rep(i,n){ d[i+1][c[i]]++; d[i+1][0]+=d[i][0]; d[i+1][1]+=d[i][1]; } vector<ll>now(32); ll l=0; ll ans=0; rep(i,n){ rep(j,32){ if((1<<j)&a[i])now[j]++; } while(1){ ll ma=0; rep(j,32)ma=max(ma,now[j]); if(ma<2)break; rep(j,32)if((1<<j)&a[l])now[j]--; l++; } ans+=d[i][c[i]]; if(l)ans-=d[l-1][c[i]]; //cout<<i<<' '<<c[i]<<' '<<l<<' '<<ans<<endl; } cout<<ans<<endl; } signed main(){ cin.tie(0); ios::sync_with_stdio(false); solve(); }