#ifndef HIDDEN_IN_VISUAL_STUDIO // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair; using pll = pair; using pil = pair; using pli = pair; using vi = vector; using vvi = vector; using vvvi = vector; using vl = vector; using vvl = vector; using vvvl = vector; using vb = vector; using vvb = vector; using vvvb = vector; using vc = vector; using vvc = vector; using vvvc = vector; using vd = vector; using vvd = vector; using vvvd = vector; template using priority_queue_rev = priority_queue, greater>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi dx4 = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi dy4 = { 0, 1, 0, -1 }; const vi dx8 = { 1, 1, 0, -1, -1, -1, 0, 1 }; // 8 近傍 const vi dy8 = { 0, 1, 1, 1, 0, -1, -1, -1 }; const int INF = 1001001001; const ll INFL = 4004004004004004004LL; const double EPS = 1e-10; // 許容誤差に応じて調整 // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define distance (int)distance #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define repit(it, a) for(auto it = (a).begin(); it != (a).end(); ++it) // イテレータを回す(昇順) #define repitr(it, a) for(auto it = (a).rbegin(); it != (a).rend(); ++it) // イテレータを回す(降順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 // 汎用関数の定義 template inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 演算子オーバーロード template inline istream& operator>> (istream& is, pair& p) { is >> p.first >> p.second; return is; } template inline ostream& operator<< (ostream& os, const pair& p) { os << "(" << p.first << "," << p.second << ")"; return os; } template inline istream& operator>> (istream& is, tuple& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); return is; } template inline ostream& operator<< (ostream& os, const tuple& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << ")"; return os; } template inline istream& operator>> (istream& is, tuple& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t); return is; } template inline ostream& operator<< (ostream& os, const tuple& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << "," << get<3>(t) << ")"; return os; } template inline istream& operator>> (istream& is, vector& v) { repea(x, v) is >> x; return is; } template inline ostream& operator<< (ostream& os, const vector& v) { repe(x, v) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const list& v) { repe(x, v) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const set& s) { repe(x, s) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const set>& s) { repe(x, s) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const unordered_set& s) { repe(x, s) os << x << " "; return os; } template inline ostream& operator<< (ostream& os, const map& m) { repe(p, m) os << p << " "; return os; } template inline ostream& operator<< (ostream& os, const map>& m) { repe(p, m) os << p << " "; return os; } template inline ostream& operator<< (ostream& os, const unordered_map& m) { repe(p, m) os << p << " "; return os; } template inline ostream& operator<< (ostream& os, stack s) { while (!s.empty()) { os << s.top() << " "; s.pop(); } return os; } template inline ostream& operator<< (ostream& os, queue q) { while (!q.empty()) { os << q.front() << " "; q.pop(); } return os; } template inline ostream& operator<< (ostream& os, deque q) { while (!q.empty()) { os << q.front() << " "; q.pop_front(); } return os; } template inline ostream& operator<< (ostream& os, priority_queue q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; } template inline ostream& operator<< (ostream& os, priority_queue_rev q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; } template inline vector& operator--(vector& v) { repea(x, v) --x; return v; } template inline vector& operator++(vector& v) { repea(x, v) ++x; return v; } // 手元環境(Visual Studio) #ifdef _MSC_VER #define popcount (int)__popcnt // 全ビット中の 1 の個数 #define popcountll (int)__popcnt64 inline int lsb(unsigned int n) { unsigned long i; _BitScanForward(&i, n); return i; } // 最下位ビットの位置(0-indexed) inline int lsbll(unsigned long long n) { unsigned long i; _BitScanForward64(&i, n); return i; } inline int msb(unsigned int n) { unsigned long i; _BitScanReverse(&i, n); return i; } // 最上位ビットの位置(0-indexed) inline int msbll(unsigned long long n) { unsigned long i; _BitScanReverse64(&i, n); return i; } template T gcd(T a, T b) { return b ? gcd(b, a % b) : a; } #define input_from_file(f) ifstream _is(f); cin.rdbuf(_is.rdbuf()); #define output_to_file(f) ofstream _os(f); cout.rdbuf(_os.rdbuf()); // 提出用(gcc) #else #define popcount (int)__builtin_popcount #define popcountll (int)__builtin_popcountll #define lsb __builtin_ctz #define lsbll __builtin_ctzll #define msb(n) (31 - __builtin_clz(n)) #define msbll(n) (63 - __builtin_clzll(n)) #define gcd __gcd #define input_from_file(f) #define output_to_file(f) #endif // デバッグ出力用 #ifdef _MSC_VER #define dump(x) cerr << "\033[1;36m" << (x) << "\033[0m" << endl; #define dumps(x) cerr << "\033[1;36m" << (x) << "\033[0m "; #define dumpel(a) { int _i_ = -1; cerr << "\033[1;36m"; repe(x, a) {cerr << ++_i_ << ": " << x << endl;} cerr << "\n\033[0m"; } #else #define dump(x) #define dumps(x) #define dumpel(v) #endif #endif // 折りたたみ用 //-----------------AtCoder 専用----------------- #include using namespace atcoder; using mint = modint1000000007; //using mint = modint998244353; //using mint = modint; // mint::set_mod(m); istream& operator>> (istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<< (ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector; using vvm = vector; using vvvm = vector; //---------------------------------------------- //【素因数分解】O(√n) /* * n を素因数分解した結果を pps に格納する. * * pps[p] = d : n に素因数 p が d 個含まれていることを表す. */ void factor_integer(ll n, map& pps) { // verify : https://algo-method.com/tasks/457 pps.clear(); for (ll i = 2; i * i <= n; i++) { int d = 0; while (n % i == 0) { d++; n /= i; } if (d > 0) pps[i] = d; } if (n > 1) pps[n] = 1; } //【約数列挙】O(√n) /* * n の約数全てをリスト ds に昇順に格納する. */ void divisors(ll n, vl& ds) { // verify : https://algo-method.com/tasks/346 ds.clear(); if (n == 1) { ds.push_back(1); return; } ll i = 1; for (; i * i < n; i++) { if (n % i == 0) { ds.push_back(i); ds.push_back(n / i); } } if (i * i == n) ds.push_back(i); sort(all(ds)); } //【最小除外数(mex)】 /* * Nimber() : O(1) * 空で初期化する. * * insert(v) : O(log n) * ニム値 v をもつ局面を 1 つ追加する. * * erase(v) : O(log n) * ニム値 v をもつ局面を 1 つ削除する. * * mex() : O(log n) * 現在記録されている局面のニム値の mex を返す. */ struct Nimber { // lrs : 連続したニム値をもつ閉区間 [l, r] の集合 set lrs; // cnt[v] : ニム値 v をもつ局面の数 unordered_map cnt; // コンストラクタ(空で初期化) Nimber() {} // ニム値 v をもつ局面を 1 つ追加する. void insert(int v) { // ニム値 v の局面数を 1 増やす. cnt[v]++; // 既にニム値 v の局面があったならば区間に変更はない. if (cnt[v] > 1) return; // v がその左右の区間と結合するかを調べる. bool ljoin = false, rjoin = false; auto it = lrs.upper_bound({ v, v }); if (it != lrs.begin() && prev(it)->second == v - 1) ljoin = true; if (it != lrs.end() && it->first == v + 1) rjoin = true; // 区間の結合の仕方に応じて区間を削除,追加する. if (ljoin) { if (rjoin) { pii lr = { prev(it)->first, it->second }; it = lrs.erase(it); lrs.erase(prev(it)); lrs.insert(lr); } else { pii lr = { prev(it)->first, v }; lrs.erase(prev(it)); lrs.insert(lr); } } else { if (rjoin) { pii lr = { v, it->second }; lrs.erase(it); lrs.insert(lr); } else { lrs.insert({ v, v }); } } } // ニム値 v をもつ局面を 1 つ削除する. void erase(int v) { // ニム値 v をもつ局面がなければ何もしない. if (cnt[v] == 0) return; // ニム値 v の局面数を 1 減らす. cnt[v]--; // まだニム値 v の局面があるならば区間に変更はない. if (cnt[v] >= 1) return; // v でその左右の区間が分断されるかに応じて区間を削除,追加する. auto it = prev(lrs.upper_bound({ v, INF })); int l, r; tie(l, r) = *it; lrs.erase(it); if (l < v) lrs.insert({ l, v - 1 }); if (r > v) lrs.insert({ v + 1, r }); } // 現在記録されている局面のニム値の最小除外数を返す. int mex() { if (lrs.empty() || lrs.begin()->first > 0) return 0; return lrs.begin()->second + 1; } }; // 単因子標準形に直せていなかった. void WA() { int n; cin >> n; vl a(n); cin >> a; // このゲームが Z/m[i]Z を割っていくゲームであることを表す vl ms; rep(i, n) { map pps; factor_integer(a[i], pps); // 中国式剰余定理 repe(pp, pps) { ll p; int d; tie(p, d) = pp; // 雪江代数2 p.226 命題 4.7.15(既約剰余類群の構造) if (p == 2) { if (d == 1); else if (d == 2) ms.push_back(2); else { ms.push_back(pow(p, d - 2)); ms.push_back(2); } } else { ms.push_back(pow(p, d - 1) * (p - 1)); } } } dump(ms); unordered_map nim; nim[1] = 0; function rf = [&](ll m) { if (nim.count(m)) return nim[m]; vl ds; divisors(m, ds); Nimber g; repe(d, ds) { if (d == m) continue; g.insert(rf(d)); } nim[m] = g.mex(); return nim[m]; }; int res = 0; repe(m, ms) { res ^= rf(m); } dump(nim); cout << (res == 0 ? "X" : "Y") << endl; } void WA2() { int n; cin >> n; vl a(n); cin >> a; // このゲームが Z/m[i]Z を割っていくゲームであることを表す vl ms; rep(i, n) { map pps; factor_integer(a[i], pps); unordered_map pps_sub; // 中国式剰余定理 repe(pp, pps) { ll p; int d; tie(p, d) = pp; // 雪江代数2 p.226 命題 4.7.15(既約剰余類群の構造) if (p == 2) { if (d == 1); else if (d == 2) pps_sub[2].push_back(1); else { pps_sub[2].push_back(d - 2); pps_sub[2].push_back(1); } } else { ll m = pow(p, d - 1) * (p - 1); map pps_m; factor_integer(m, pps_m); repe(pp, pps_m) { ll p_m; int d_m; tie(p_m, d_m) = pp; pps_sub[p_m].push_back(d_m); } } } // 有限アーベル群の基本定理 vl m_subs; repe(pp, pps_sub) { ll p; vi ds; tie(p, ds) = pp; sort(all(ds), greater()); rep(i, sz(ds)) { if (sz(m_subs) <= i) { m_subs.push_back(1); } m_subs[i] *= pow(p, ds[i]); } } repe(m, m_subs) ms.push_back(m); } dump(ms); unordered_map nim; nim[1] = 0; function rf = [&](ll m) { if (nim.count(m)) return nim[m]; vl ds; divisors(m, ds); Nimber g; repe(d, ds) { if (d == m) continue; g.insert(rf(d)); } nim[m] = g.mex(); return nim[m]; }; int res = 0; repe(m, ms) { res ^= rf(m); } dump(nim); cout << (res == 0 ? "X" : "Y") << endl; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); //【方法】 // Z / A[i]Z の単元群の構造は,雪江代数2 命題4.7.15 と中国式剰余定理で決定できる. // 各授業を実施すると群がその巡回部分群で割った剰余群に置き換えられ, // 有限アーベル群の基本定理や準同型定理で構造が分かる. // 各群に対応するニム値を求められれば,その xor をとって判定できる. int n; cin >> n; vl a(n); cin >> a; vvvi dsss(n); rep(i, n) { map pps; factor_integer(a[i], pps); unordered_map pps_sub; // 中国式剰余定理 repe(pp, pps) { ll p; int d; tie(p, d) = pp; // 雪江代数2 p.226 命題 4.7.15(既約剰余類群の構造) if (p == 2) { if (d == 1); else if (d == 2) pps_sub[2].push_back(1); else { pps_sub[2].push_back(d - 2); pps_sub[2].push_back(1); } } else { ll m = pow(p, d - 1) * (p - 1); map pps_m; factor_integer(m, pps_m); repe(pp, pps_m) { ll p_m; int d_m; tie(p_m, d_m) = pp; pps_sub[p_m].push_back(d_m); } } } vvi dss; repea(pp, pps_sub) { sort(all(pp.second), greater()); dss.push_back(pp.second); } sort(all(dss), greater()); dsss[i] = dss; } dumpel(dsss); map nim; nim[vvi()] = 0; function get_nim = [&](vvi dss) { if (nim.count(dss)) return nim[dss]; vvi dss_bak = dss; Nimber nbr; function dfs = [&](int i) { if (i == sz(dss)) { if (dss == dss_bak) return; vvi dss_tmp = dss; repea(ds, dss_tmp) { sort(all(ds), greater()); if (*ds.rbegin() == 0) { ds.pop_back(); } } sort(all(dss_tmp), greater()); while (!dss_tmp.empty() && dss_tmp.rbegin()->empty()) { dss_tmp.pop_back(); } nbr.insert(get_nim(dss_tmp)); return; } int d_max = dss[i][0]; repi(d, 0, d_max) { dss[i][0] = d; dfs(i + 1); } }; dfs(0); nim[dss] = nbr.mex(); return nim[dss]; }; int res = 0; repe(dss, dsss) { res ^= get_nim(dss); } dumpel(nim); cout << (res == 0 ? "X" : "Y") << endl; }