#include #include typedef long long int ll; typedef long long int ull; #define MP make_pair using namespace std; using namespace atcoder; typedef pair P; const ll MOD = 998244353; // const ll MOD = 1000000007; using mint = modint998244353; // using mint = modint1000000007; const double pi = 3.1415926536; const int MAX = 2000003; long long fac[MAX], finv[MAX], inv[MAX]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++){ fac[i] = fac[i - 1] * i % MOD; inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD; finv[i] = finv[i - 1] * inv[i] % MOD; } } // 二項係数計算 long long COM(int n, int k){ if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD; } ll gcd(ll x, ll y) { if (y == 0) return x; else if (y > x) { return gcd (y, x); } else return gcd(x % y, y); } ll lcm (ll x, ll y) { return x / gcd(x, y) * y; } ll my_sqrt(ll x) { ll m = 0; ll M = 3000000001; while (M - m > 1) { ll now = (M + m) / 2; if (now * now <= x) { m = now; } else { M = now; } } return m; } ll keta(ll n) { ll ret = 0; while (n) { n /= 10; ret++; } return ret; } ll ceil(ll n, ll m) { // n > 0, m > 0 ll ret = n / m; if (n % m) ret++; return ret; } ll pow_ll(ll x, ll n) { if (n == 0) return 1; if (n % 2) { return pow_ll(x, n - 1) * x; } else { ll tmp = pow_ll(x, n / 2); return tmp * tmp; } } typedef struct { int to; int id; } edge; vector v[101]; int des[101]; // 辺iの子孫の数 int cst[101]; // 辺iのコスト void dfs(int par, int cur, int now_id) { int d = 0; for (auto e : v[cur]) { if (e.to == par) continue; dfs(cur, e.to, e.id); d += des[e.id]; } if ((v[cur].size() == 0) || ((v[cur].size() == 1) && (v[cur][0].to == par))) d++; des[now_id] = d; } int main() { int n, k; cin >> n >> k; for (int i = 1; i <= n - 1; i++) { int a, b, c; cin >> a >> b >> c; edge e1, e2; e1.to = b; e1.id = i; cst[i] = c; v[a].push_back(e1); e2.to = a; e2.id = i; v[b].push_back(e2); } dfs(0, 1, 0); // for (int i = 1; i <= n - 1; i++) { // cout << des[i] << ' ' << cst[i] << endl; // } int dp[n + 1][k + 1]; // i番目まででj長さ時の最大追加料 for (int i = 0; i <= n; i++) { for (int j = 0; j <= k; j++) { dp[i][j] = 0; } } int first_ans = 0; for (int i = 1; i <= n - 1; i++) { first_ans += cst[i] * des[i]; } // cout << first_ans << endl; for (int i = 0; i < n; i++) { for (int j = 0; j <= k; j++) { dp[i + 1][j] = max(dp[i][j], dp[i + 1][j]); // 追加しない if (j + cst[i + 1] <= k) { dp[i + 1][j + cst[i + 1]] = max(dp[i + 1][j + cst[i + 1]], dp[i][j] + des[i + 1] * cst[i + 1]); } } } int add = 0; for (int i = 0; i <= k; i++) { add = max(add, dp[n][i]); } cout << first_ans + add << endl; return 0; }