def sieve(n): is_prime = [True for _ in range(n+1)] is_prime[0] = False for i in range(2, n+1): if is_prime[i-1]: j = i * i while j <= n: is_prime[j-1] = False j += i table = [ i for i in range(1, n+1) if is_prime[i-1]] return [False]+is_prime, table def two_sat(n,clause): answer=[0]*n edges=[] N=2*n for s in clause: i,f,j,g=s edges.append((2*i+(0 if f else 1),2*j+(1 if g else 0))) edges.append((2*j+(0 if g else 1),2*i+(1 if f else 0))) M=len(edges) start=[0]*(N+1) elist=[0]*M for e in edges: start[e[0]+1]+=1 for i in range(1,N+1): start[i]+=start[i-1] counter=start[:] for e in edges: elist[counter[e[0]]]=e[1] counter[e[0]]+=1 visited=[] low=[0]*N Ord=[-1]*N ids=[0]*N NG=[0,0] def dfs(v): stack=[(v,-1,0),(v,-1,1)] while stack: v,bef,t=stack.pop() if t: if bef!=-1 and Ord[v]!=-1: low[bef]=min(low[bef],Ord[v]) stack.pop() continue low[v]=NG[0] Ord[v]=NG[0] NG[0]+=1 visited.append(v) for i in range(start[v],start[v+1]): to=elist[i] if Ord[to]==-1: stack.append((to,v,0)) stack.append((to,v,1)) else: low[v]=min(low[v],Ord[to]) else: if low[v]==Ord[v]: while(True): u=visited.pop() Ord[u]=N ids[u]=NG[1] if u==v: break NG[1]+=1 low[bef]=min(low[bef],low[v]) for i in range(N): if Ord[i]==-1: dfs(i) for i in range(N): ids[i]=NG[1]-1-ids[i] for i in range(n): if ids[2*i]==ids[2*i+1]: return None answer[i]=(ids[2*i]