import types _atcoder_code = """ # Python port of AtCoder Library. __version__ = '0.0.1' """ atcoder = types.ModuleType('atcoder') exec(_atcoder_code, atcoder.__dict__) _atcoder__scc_code = """ import copy import sys import typing class CSR: def __init__( self, n: int, edges: typing.List[typing.Tuple[int, int]]) -> None: self.start = [0] * (n + 1) self.elist = [0] * len(edges) for e in edges: self.start[e[0] + 1] += 1 for i in range(1, n + 1): self.start[i] += self.start[i - 1] counter = copy.deepcopy(self.start) for e in edges: self.elist[counter[e[0]]] = e[1] counter[e[0]] += 1 class SCCGraph: ''' Reference: R. Tarjan, Depth-First Search and Linear Graph Algorithms ''' def __init__(self, n: int) -> None: self._n = n self._edges = [] def num_vertices(self) -> int: return self._n def add_edge(self, from_vertex: int, to_vertex: int) -> None: self._edges.append((from_vertex, to_vertex)) def scc_ids(self) -> typing.Tuple[int, typing.List[int]]: g = CSR(self._n, self._edges) now_ord = 0 group_num = 0 visited = [] low = [0] * self._n order = [-1] * self._n ids = [0] * self._n sys.setrecursionlimit(max(self._n + 1000, sys.getrecursionlimit())) def dfs(v: int) -> None: nonlocal now_ord nonlocal group_num nonlocal visited nonlocal low nonlocal order nonlocal ids low[v] = now_ord order[v] = now_ord now_ord += 1 visited.append(v) for i in range(g.start[v], g.start[v + 1]): to = g.elist[i] if order[to] == -1: dfs(to) low[v] = min(low[v], low[to]) else: low[v] = min(low[v], order[to]) if low[v] == order[v]: while True: u = visited[-1] visited.pop() order[u] = self._n ids[u] = group_num if u == v: break group_num += 1 for i in range(self._n): if order[i] == -1: dfs(i) for i in range(self._n): ids[i] = group_num - 1 - ids[i] return group_num, ids def scc(self) -> typing.List[typing.List[int]]: ids = self.scc_ids() group_num = ids[0] counts = [0] * group_num for x in ids[1]: counts[x] += 1 groups = [[] for _ in range(group_num)] for i in range(self._n): groups[ids[1][i]].append(i) return groups """ atcoder._scc = types.ModuleType('atcoder._scc') exec(_atcoder__scc_code, atcoder._scc.__dict__) _atcoder_twosat_code = """ import typing # import atcoder._scc class TwoSAT: ''' Reference: B. Aspvall, M. Plass, and R. Tarjan, A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas ''' def __init__(self, n: int = 0) -> None: self._n = n self._answer = [False] * n self._scc = atcoder._scc.SCCGraph(2 * n) def add_clause(self, i: int, f: bool, j: int, g: bool) -> None: assert 0 <= i < self._n assert 0 <= j < self._n self._scc.add_edge(2 * i + (0 if f else 1), 2 * j + (1 if g else 0)) self._scc.add_edge(2 * j + (0 if g else 1), 2 * i + (1 if f else 0)) def satisfiable(self) -> bool: scc_id = self._scc.scc_ids()[1] for i in range(self._n): if scc_id[2 * i] == scc_id[2 * i + 1]: return False self._answer[i] = scc_id[2 * i] < scc_id[2 * i + 1] return True def answer(self) -> typing.List[bool]: return self._answer """ atcoder.twosat = types.ModuleType('atcoder.twosat') atcoder.twosat.__dict__['atcoder'] = atcoder atcoder.twosat.__dict__['atcoder._scc'] = atcoder._scc exec(_atcoder_twosat_code, atcoder.twosat.__dict__) TwoSAT = atcoder.twosat.TwoSAT # https://atcoder.jp/contests/practice2/tasks/practice2_h import sys # from atcoder.twosat import TwoSAT def sieve(n): is_prime = [True for _ in range(n+1)] is_prime[0] = False for i in range(2, n+1): if is_prime[i-1]: j = i * i while j <= n: is_prime[j-1] = False j += i table = [ i for i in range(1, n+1) if is_prime[i-1]] return [False]+is_prime, table def main() -> None: N = int(input()) T,_ = sieve(10**6) AB = [list(input().split()) for _ in range(N)] two_sat = TwoSAT(N) for a,b in AB: if T[int(a+b)] and T[int(b+a)]: print('No') return for i in range(N): for j in range(i + 1, N): ia,ib,ja,jb = AB[i][0],AB[i][1],AB[j][0],AB[j][1] if T[int(ia+ib)] or T[int(ja+jb)] or T[int(ia+jb)] or T[int(ja+ib)]: two_sat.add_clause(i, 0, j, 0) if T[int(ia+ib)] or T[int(jb+ja)] or T[int(ia+ja)] or T[int(jb+ib)]: two_sat.add_clause(i, 0, j, 1) if T[int(ib+ia)] or T[int(ja+jb)] or T[int(ib+jb)] or T[int(ja+ia)]: two_sat.add_clause(i, 1, j, 0) if T[int(ib+ia)] or T[int(jb+ja)] or T[int(jb+ia)] or T[int(ib+ja)]: two_sat.add_clause(i, 1, j, 1) if not two_sat.satisfiable(): print("No") else: print("Yes") if __name__ == '__main__': main()