#define _USE_MATH_DEFINES #define _EXT_CODECVT_SPECIALIZATIONS_H 1 #define _EXT_ENC_FILEBUF_H 1 #include #include using namespace std; /* #include using namespace atcoder; */ /* #include #include using bll = boost::multiprecision::cpp_int; using bdouble = boost::multiprecision::number>; using namespace boost::multiprecision; */ //#define int long long using ll = long long; //constexpr ll MOD = (ll)1e9 + 7; //primitive root = 5 constexpr ll MOD = 998244353; //primitive root = 3 //INT_MAX = (1<<31)-1 = 2147483647, INT64_MAX = (1LL<<63)-1 = 9223372036854775807 constexpr ll INF = std::numeric_limits::max() == INT_MAX ? (ll)1e9 + 7 : (ll)1e18; constexpr double EPS = 1e-9; constexpr ll dx[4] = {1, 0, -1, 0}; constexpr ll dy[4] = {0, 1, 0, -1}; constexpr ll dx8[8] = {1, 0, -1, 0, 1, 1, -1, -1}; constexpr ll dy8[8] = {0, 1, 0, -1, 1, -1, 1, -1}; #if defined(LOCAL_TEST) || defined(LOCAL_DEV) #define BOOST_STACKTRACE_USE_ADDR2LINE #define BOOST_STACKTRACE_ADDR2LINE_LOCATION /usr/local/opt/binutils/bin/addr2line #define _GNU_SOURCE 1 #include #endif #ifdef LOCAL_TEST namespace std { template class dvector : public std::vector { public: using std::vector::vector; template , std::nullptr_t> = nullptr> std::vector::reference operator[](std::size_t n) { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } template , std::nullptr_t> = nullptr> const T_ operator[](std::size_t n) const { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } template , std::nullptr_t> = nullptr> T_& operator[](std::size_t n) { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } template , std::nullptr_t> = nullptr> const T_& operator[](std::size_t n) const { if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n); } }; template , typename Allocator = std::allocator> class dmultiset : public std::multiset { public: using std::multiset::multiset; const typename std::multiset::iterator erase(const typename std::multiset::iterator it) { return std::multiset::erase(it); } std::size_t erase([[maybe_unused]] const T& x) { std::cerr << boost::stacktrace::stacktrace() << '\n'; assert(false); } std::size_t erase_all_elements(const T& x) { return std::multiset::erase(x); } }; } #define vector dvector #define multiset dmultiset class SIGFPE_exception : std::exception {}; class SIGSEGV_exception : std::exception {}; void catch_SIGFPE([[maybe_unused]] int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGFPE_exception(); } void catch_SIGSEGV([[maybe_unused]] int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGSEGV_exception(); } signed convertedmain(); signed main() { signal(SIGFPE, catch_SIGFPE); signal(SIGSEGV, catch_SIGSEGV); return convertedmain(); } #define main() convertedmain() #else #define erase_all_elements erase #endif #ifdef LOCAL_DEV template std::ostream& operator<<(std::ostream& s, const std::pair& p) { return s << "(" << p.first << ", " << p.second << ")"; } template std::ostream& operator<<(std::ostream& s, const std::array& a) { s << "{ "; for (std::size_t i = 0; i < N; ++i){ s << a[i] << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::set& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::multiset& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::map& m) { s << "{\n"; for (auto itr = m.begin(); itr != m.end(); ++itr){ s << "\t" << (*itr).first << " : " << (*itr).second << "\n"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const std::deque& v) { for (std::size_t i = 0; i < v.size(); ++i){ s << v[i]; if (i < v.size() - 1) s << "\t"; } return s; } template std::ostream& operator<<(std::ostream& s, const std::vector& v) { for (std::size_t i = 0; i < v.size(); ++i){ s << v[i]; if (i < v.size() - 1) s << "\t"; } return s; } template std::ostream& operator<<(std::ostream& s, const std::vector>& vv) { s << "\\\n"; for (std::size_t i = 0; i < vv.size(); ++i){ s << vv[i] << "\n"; } return s; } template , std::nullptr_t> = nullptr> std::ostream& operator<<(std::ostream& s, const T (&v)[N]) { for (std::size_t i = 0; i < N; ++i){ s << v[i]; if (i < N - 1) s << "\t"; } return s; } template , std::nullptr_t> = nullptr> std::ostream& operator<<(std::ostream& s, const T (&vv)[N][M]) { s << "\\\n"; for (std::size_t i = 0; i < N; ++i){ s << vv[i] << "\n"; } return s; } #if __has_include() template std::ostream& operator<<(std::ostream& s, const __gnu_pbds::tree& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; } template std::ostream& operator<<(std::ostream& s, const __gnu_pbds::gp_hash_table& m) { s << "{\n"; for (auto itr = m.begin(); itr != m.end(); ++itr){ s << "\t" << (*itr).first << " : " << (*itr).second << "\n"; } s << "}"; return s; } #endif void debug_impl() { std::cerr << '\n'; } template void debug_impl(Head& head, Tail&... tail) { std::cerr << " " << head << (sizeof...(tail) ? "," : ""); debug_impl(tail...); } template void debug_impl(const Head& head, const Tail&... tail) { std::cerr << " " << head << (sizeof...(tail) ? "," : ""); debug_impl(tail...); } #define debug(...) do { std::cerr << ":" << __LINE__ << " (" << #__VA_ARGS__ << ") ="; debug_impl(__VA_ARGS__); } while (false) constexpr inline long long prodlocal([[maybe_unused]] long long prod, [[maybe_unused]] long long local) { return local; } #else #define debug(...) do {} while (false) constexpr inline long long prodlocal([[maybe_unused]] long long prod, [[maybe_unused]] long long local) { return prod; } #endif #define repoverload3(_1, _2, _3, name, ...) name #define rep3(i, a, b) for(ll i=(a), i##_length=(b); i=(a); --i) #define rrep2(i, n) rrep3(i, 0, n) #define rrep1(n) rrep3(i, 0, n) #define rrep(...) repoverload3(__VA_ARGS__, rrep3, rrep2, rrep1)(__VA_ARGS__) #define rrepeq3(i, a, b) rrep3(i, (a)+1, (b)+1) #define rrepeq2(i, n) rrep3(i, 1, (n)+1) #define rrepeq1(n) rrep3(i, 1, (n)+1) #define rrepeq(...) repoverload3(__VA_ARGS__, rrepeq3, rrepeq2, rrepeq1)(__VA_ARGS__) #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) void p() { std::cout << '\n'; } template void p(Head& head, Tail&... tail) { std::cout << head << (sizeof...(tail) ? " " : ""); p(tail...); } template void p(const Head& head, const Tail&... tail) { std::cout << head << (sizeof...(tail) ? " " : ""); p(tail...); } template inline void pv(const T& v) { for(ll i=0, N=std::size(v); i inline bool chmax(T& a, T b) { return a < b && (a = b, true); } template inline bool chmin(T& a, T b) { return a > b && (a = b, true); } template inline void uniq(T& v) { std::sort(v.begin(), v.end()); v.erase(std::unique(v.begin(), v.end()), v.end()); } template inline ll sz(const T& v) { return std::size(v); } template std::vector make_vector_impl(std::vector& sizes, typename std::enable_if<(N==1), const T&>::type x) { return std::vector(sizes.front(),x); } template auto make_vector_impl(std::vector& sizes, typename std::enable_if<(N>1), const T&>::type x) { ll size=sizes.back(); sizes.pop_back(); return std::vector(sizes,x))>(size,make_vector_impl(sizes,x)); } template auto make_vector(const ll (&sizes)[N], const T& x=T()) { std::vector s(N); for(std::size_t i=0; i(s,x); } #if __has_include() class custom_hash { public: static uint64_t splitmix64(uint64_t x) { x += 0x9e3779b97f4a7c15, x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9, x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } size_t operator()(uint64_t x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } }; template , std::nullptr_t> = nullptr> class fmap : public __gnu_pbds::gp_hash_table { public: using __gnu_pbds::gp_hash_table::gp_hash_table; template fmap(std::initializer_list> il) : __gnu_pbds::gp_hash_table() { for (auto&& x : il) __gnu_pbds::gp_hash_table::insert(std::pair(*x.begin(), *(x.begin() + 1))); } template ll count(const T& x) const { return __gnu_pbds::gp_hash_table::find(x) != __gnu_pbds::gp_hash_table::end(); } }; #else template using fmap = std::map; #endif template class zip_iterator_base : std::iterator().begin())...>> { public: ll idx_; std::tuple().begin())...> iters_; template auto deref(std::index_sequence) const { return typename zip_iterator_base::value_type{*std::get(iters_)...}; } template void increment(std::index_sequence) { [[maybe_unused]] auto l = {(++std::get(iters_), 0)...}; } explicit zip_iterator_base(decltype(iters_) iters) : idx_(0), iters_{std::move(iters)} {} zip_iterator_base& operator++() { ++idx_; increment(std::index_sequence_for{}); return *this; } zip_iterator_base operator++(int) { auto saved{*this}; ++idx_; increment(std::index_sequence_for{}); return saved; } bool operator!=(const zip_iterator_base& other) const { return iters_ != other.iters_; } }; template class zip_iterator : public zip_iterator_base { public: using zip_iterator_base::zip_iterator_base; auto operator*() const { return this->deref(std::index_sequence_for{}); } }; template class zipindex_iterator : public zip_iterator_base { public: using zip_iterator_base::zip_iterator_base; auto operator*() const { return std::tuple_cat(std::make_tuple(this->idx_), this->deref(std::index_sequence_for{})); } }; template class zip_helper { public: zip_helper(T&... seqs) : begin_{std::make_tuple(seqs.begin()...)}, end_{std::make_tuple(seqs.end()...)} {} IteratorType begin() const { return begin_; } IteratorType end() const { return end_; } IteratorType begin_, end_; }; template auto zip(T&&... seqs) { return zip_helper, T...>{seqs...}; } template auto zipindex(T&&... seqs) { return zip_helper, T...>{seqs...}; } /*-----8<-----template-----8<-----*/ //[lib]unionfind.cpp class UnionFind { public: vector v; UnionFind() = default; UnionFind(size_t size) : v(size, -1) {} ll root(ll x) { return (v[x] < 0 ? x : v[x] = root(v[x])); } bool is_root(ll x) { return x == root(x); } bool is_same(ll x, ll y) { return root(x) == root(y); } bool unite(ll x, ll y) { x = root(x); y = root(y); if (x == y) return false; if (v[x] > v[y]) swap(x, y); v[x] += v[y]; v[y] = x; return true; } ll size(ll x) { return -v[root(x)]; } }; std::ostream& operator<<(std::ostream& s, const UnionFind& uf) { for (size_t i = 0; i < uf.v.size(); ++i){ s << uf.v[i]; if (i < uf.v.size() - 1) s << "\t"; } return s; } //[lib](internal)edge.cpp using EdgeCostType = ll; using usize = ll; template class edge_type { public: usize from, to; T cost; edge_type() {} edge_type(usize from, usize to, T cost) : from(from), to(to), cost(cost) {} bool operator<(const edge_type& r) const { return r.cost < cost; } }; using Edge = edge_type; ostream& operator<<(ostream& s, const Edge& e) { s << "{ " << e.from << " -> " << e.to << ", " << e.cost << " }"; return s; } inline void addedge(vector>& g, usize from, usize to, EdgeCostType cost) { g[from].emplace_back(from, to, cost); g[to].emplace_back(to, from, cost); } //最短路木の親頂点を元にstart->goalの経路を作成 vector buildPath(const vector &prev, ll goal) { vector path; for (ll u = goal; u >= 0; u = prev[u]) path.push_back(u); reverse(path.begin(), path.end()); return path; } //[lib]dijkstra.cpp //[depends on](internal)edge.cpp template class fibonacci_heap { class node_type; using node_ptr = node_type *; class node_type { public: node_ptr parent; node_ptr child; node_ptr left; node_ptr right; usize rank; bool mark; T key; usize prev; node_type() : parent(nullptr), child(nullptr), left(nullptr), right(nullptr), rank(0), mark(false), key(std::numeric_limits::max()), prev(-1) {} }; vector nodes; node_ptr root; vector table; public: fibonacci_heap(const usize n) : nodes(n), root(nullptr), table(std::ceil(std::log(n + 1) * 2.08), nullptr) {} bool empty() const { return root == nullptr; } edge_type pop() { edge_type ret = {root->prev, static_cast(root - nodes.data()), root->key}; usize max = 0; const auto push = [&](node_ptr v) -> void { while (true) { node_ptr u = table[v->rank]; if (u == nullptr) { table[v->rank] = v; break; } table[v->rank] = nullptr; if (u->key < v->key) { std::swap(u, v); } const node_ptr c = v->child; if (c == nullptr) { u->left = u; u->right = u; v->child = u; } else { u->left = c->left; u->right = c; c->left->right = u; c->left = u; } u->parent = v; v->rank += 1; } max = std::max(max, v->rank + 1); }; { node_ptr v = root->right; while (v != root) { const node_ptr next = v->right; push(v); v = next; } } if (root->child != nullptr) { node_ptr v = root->child; do { const node_ptr next = v->right; v->mark = false; push(v); v = next; } while (v != root->child); } root = nullptr; for (usize i = 0; i != max; i += 1) { const node_ptr v = table[i]; if (v == nullptr) { continue; } table[i] = nullptr; v->parent = nullptr; if (root == nullptr) { root = v; v->left = v; v->right = v; } else { v->left = root->left; v->right = root; root->left->right = v; root->left = v; if (root->key > v->key) { root = v; } } } return ret; } void update_key(const usize v_, const T key, const usize prev) { node_ptr v = &nodes[v_]; if (v->key <= key) { return; } v->key = key; v->prev = prev; if (v->left == nullptr) { if (root == nullptr) { v->left = v; v->right = v; root = v; } else { v->left = root->left; v->right = root; root->left->right = v; root->left = v; if (key < root->key) { root = v; } } return; } if (v->parent == nullptr) { if (key < root->key) { root = v; } return; } else { if (v->parent->key <= key) { return; } } while (true) { const node_ptr p = v->parent; v->left->right = v->right; v->right->left = v->left; v->parent = nullptr; p->rank -= 1; if (p->child == v) { if (p->rank == 0) { p->child = nullptr; } else { p->child = v->right; } } v->left = root->left; v->right = root; root->left->right = v; root->left = v; v->mark = false; v = p; if (v->parent == nullptr) { break; } if (!v->mark) { v->mark = true; break; } } if (root->key > key) { root = &nodes[v_]; } } }; /* 計算量:O(E+VlogV) 引数  g:探索するグラフ  start:探索するスタートノード番号 戻り値  dist:スタートノードから各頂点までの距離  prev:最短路木の親頂点 */ void dijkstra(const vector> &g, ll start, vector &dist, vector &prev) { dist.assign(g.size(), INF); dist[start] = 0; prev.assign(g.size(), -1); fibonacci_heap heap(g.size()); heap.update_key(start, 0, -1); while (!heap.empty()) { const auto top = heap.pop(); dist[top.to] = top.cost; prev[top.to] = top.from; for (const auto &edge : g[top.to]) { heap.update_key(edge.to, top.cost + edge.cost, edge.from); } } } template void dijkstra(const ll gsize, const Func &gfunc, ll start, vector &dist, vector &prev) { dist.assign(gsize, INF); dist[start] = 0; prev.assign(gsize, -1); fibonacci_heap heap(gsize); heap.update_key(start, 0, -1); while (!heap.empty()) { const auto top = heap.pop(); dist[top.to] = top.cost; prev[top.to] = top.from; gfunc(top.to, [&](const usize nextv, const EdgeCostType nextcost) { heap.update_key(nextv, top.cost + nextcost, top.to); }); } } //[lib]dijkstra区間.cpp //[depends on]dijkstra.cpp //セグ木の形にして区間に辺を張る class Graph { public: ll N,sz; //この g にグラフを作るので、これを使ってdijkstraしてください vector> g; Graph (ll N) : N(N) { sz = 1; while(sz < N) sz <<= 1; g.resize(sz*3-2); ll diff=sz; for(ll i=0; i [tol, tor) に 距離costの辺を張る void add_edge(ll froml, ll fromr, ll tol, ll tor, EdgeCostType cost){ if(froml>=fromr || tol>=tor) return; ll from = g.size(); ll to = from + 1; g.emplace_back(); g.emplace_back(); g[from].emplace_back(from, to, cost); recursive(froml, fromr, 0, 0, sz, -1, from, sz); recursive(tol, tor, 0, 0, sz, to, -1, sz*2-1); debug(sz); //connect(froml, fromr, -1, from, sz); //connect(tol, tor, to, -1, sz*2-1); } void connect(ll l, ll r, ll from, ll to, ll diff) { bool isfirst = true; for (l += sz, r += sz; l < r; l >>= 1, r >>= 1, isfirst = false) { if(l&1) { //res.push_back(l++); ll v = isfirst ? l-sz : l+diff-1; debug(l, v); connect_edge(from, to, v); l++; } if(r&1) { --r; ll v = isfirst ? r-sz : r+diff-1; connect_edge(from, to, v); debug(r, v); // res.push_back(--r); } } } void connect_edge(ll from, ll to, ll v){ debug(v, from, to); if (from != -1) { g[from].emplace_back(from, v, 0); } else { g[v].emplace_back(v, to, 0); } } // 要求区間 [a, b) 中の要素の最小値を答える // k := 自分がいるノードのインデックス // 対象区間は [l, r) にあたる void recursive(ll a, ll b, ll k, ll l, ll r, ll from, ll to, ll diff) { // 要求区間と対象区間が交わらない -> 適当に返す if(r <= a || b <= l) return; // 要求区間が対象区間を完全に被覆 -> 対象区間を答えの計算に使う if(a <= l && r <= b) { ll v = r - l > 1 ? k + diff : k - sz + 1; debug(k,v,from,to); if (from != -1) { g[from].emplace_back(from, v, 0); } else { g[v].emplace_back(v, to, 0); } return; } // 要求区間が対象区間の一部を被覆 -> 子について探索を行う // 左側の子を vl ・ 右側の子を vr としている // 新しい対象区間は、現在の対象区間を半分に割ったもの recursive(a, b, 2*k+1, l, (l+r)/2, from, to, diff); recursive(a, b, 2*k+2, (l+r)/2, r, from, to, diff); } }; /*-----8<-----library-----8<-----*/ void solve() { ll N, A, B; cin >> N >> A >> B; vector a(N); rep(i, N) cin >> a[i]; Graph graph(N); rep(i,N){ { ll l = lower_bound(all(a), a[i] - B) - a.begin(); ll r = upper_bound(all(a), a[i] - A) - a.begin(); graph.add_edge(i, i + 1, l, r, 1); debug("----"); } { ll l = lower_bound(all(a), a[i] + A) - a.begin(); ll r = upper_bound(all(a), a[i] + B) - a.begin(); graph.add_edge(i, i + 1, l, r, 1); debug("----!!!!"); } } auto& g = graph.g; UnionFind uf(g.size()); vector seen(g.size(), INF); rep(k,N){ if (seen[k] != INF) continue; vector v; queue que; ll startpos = k; que.push(startpos); seen[k] = 0; while(!que.empty()) { auto x = que.front(); if (x < N) v.push_back(x); que.pop(); for(auto&& e:g[x]){ // seen[nx][ny]の書き換えはここでやること if(chmin(seen[e.to], seen[x] + 1)) { que.push(e.to); } } } rep(i,v.size()-1){ uf.unite(v[i], v[i + 1]); } } rep(i,N){ p(uf.size(i)); } std::cout << std::flush; _Exit(0); } signed main() { #ifndef LOCAL_DEV std::cin.tie(nullptr); std::ios::sync_with_stdio(false); #endif //ll Q; cin >> Q; while(Q--)solve(); solve(); return 0; }