#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <typename Abelian>
struct FenwickTree {
  explicit FenwickTree(const int n, const Abelian ID = 0)
      : n(n), ID(ID), data(n, ID) {}

  void add(int idx, const Abelian val) {
    for (; idx < n; idx |= idx + 1) {
      data[idx] += val;
    }
  }

  Abelian sum(int idx) const {
    Abelian res = ID;
    for (--idx; idx >= 0; idx = (idx & (idx + 1)) - 1) {
      res += data[idx];
    }
    return res;
  }

  Abelian sum(const int left, const int right) const {
    return left < right ? sum(right) - sum(left) : ID;
  }

  Abelian operator[](const int idx) const { return sum(idx, idx + 1); }

  int lower_bound(Abelian val) const {
    if (val <= ID) return 0;
    int res = 0, exponent = 1;
    while (exponent <= n) exponent <<= 1;
    for (int mask = exponent >> 1; mask > 0; mask >>= 1) {
      const int idx = res + mask - 1;
      if (idx < n && data[idx] < val) {
        val -= data[idx];
        res += mask;
      }
    }
    return res;
  }

 private:
  const int n;
  const Abelian ID;
  std::vector<Abelian> data;
};

template <typename Abelian>
struct FenwickTreeSupportingRangeAddQuery {
  explicit FenwickTreeSupportingRangeAddQuery(
      const int n_, const Abelian ID = 0)
      : n(n_ + 1), ID(ID) {
    data_const.assign(n, ID);
    data_linear.assign(n, ID);
  }

  void add(int left, const int right, const Abelian val) {
    if (right < ++left) return;
    for (int i = left; i < n; i += i & -i) {
      data_const[i] -= val * (left - 1);
      data_linear[i] += val;
    }
    for (int i = right + 1; i < n; i += i & -i) {
      data_const[i] += val * right;
      data_linear[i] -= val;
    }
  }

  Abelian sum(const int idx) const {
    Abelian res = ID;
    for (int i = idx; i > 0; i -= i & -i) {
      res += data_linear[i];
    }
    res *= idx;
    for (int i = idx; i > 0; i -= i & -i) {
      res += data_const[i];
    }
    return res;
  }

  Abelian sum(const int left, const int right) const {
    return left < right ? sum(right) - sum(left) : ID;
  }

  Abelian operator[](const int idx) const { return sum(idx, idx + 1); }

 private:
  const int n;
  const Abelian ID;
  std::vector<Abelian> data_const, data_linear;
};

int main() {
  int n; cin >> n;
  vector<int> p(n); REP(i, n) cin >> p[i], --p[i];
  vector<int> inv(n), postpone(n, false);
  FenwickTree<int> bit(n);
  REP(i, n) {
    inv[p[i]] = i;
    postpone[p[i]] = (i - bit.sum(p[i], n)) % 2 == 1;
    bit.add(p[i], 1);
  }
  FenwickTreeSupportingRangeAddQuery<ll> idx(n);
  FOR(i, 1, n) idx.add(i, n, 1);
  vector<int> x, y;
  auto op = [&](int i) -> void {
    x.emplace_back(i);
    y.emplace_back(idx[inv[i]]);
    idx.add(inv[i], n, -1);
  };
  for (int i = n - 1; i >= 0;) {
    int j = i;
    for (int r = n; j >= 0; --j) {
      if (postpone[j]) {
        chmin(r, inv[j]);
      } else {
        if (inv[j] >= r) {
          cout << "No\n";
          return 0;
        }
        op(j);
        for (; i > j; --i) op(i);
        break;
      }
    }
    if (j == -1) {
      cout << "No\n";
      return 0;
    }
    i = j - 1;
  }
  reverse(ALL(x));
  reverse(ALL(y));
  cout << "Yes\n";
  REP(i, n) cout << x[i] + 1 << ' ' << y[i] + 1 << '\n';
  return 0;
}