#include #ifndef ATCODER_LAZYSEGTREE_HPP #define ATCODER_LAZYSEGTREE_HPP 1 #ifndef ATCODER_INTERNAL_BITOP_HPP #define ATCODER_INTERNAL_BITOP_HPP 1 #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #endif // ATCODER_INTERNAL_BITOP_HPP namespace atcoder { template struct lazy_segtree { public: lazy_segtree() : lazy_segtree(0) {} explicit lazy_segtree(int n) : lazy_segtree(std::vector(n, e())) {} explicit lazy_segtree(const std::vector& v) : _n(int(v.size())) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector(2 * size, e()); lz = std::vector(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int p, F f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template int max_right(int l, G g) { assert(0 <= l && l <= _n); assert(g(e())); if (l == _n) return _n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!g(op(sm, d[l]))) { while (l < size) { push(l); l = (2 * l); if (g(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template int min_left(int r, G g) { assert(0 <= r && r <= _n); assert(g(e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!g(op(d[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (g(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector d; std::vector lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; } // namespace atcoder #endif // ATCODER_LAZYSEGTREE_HPP namespace update_min { using S = int64_t; S op(S a, S b) { return std::min(a, b); } S e() { return std::numeric_limits::max(); } using F = std::optional; S mapping(F f, S x) { return f ? *f : x; } F composition(F f, F g) { return f ? f : g; } F id() { return std::nullopt; } using segtree = atcoder::lazy_segtree; } // namespace update_min namespace add_min { using S = int64_t; S op(S a, S b) { return std::min(a, b); } S e() { return std::numeric_limits::max(); } using F = int64_t; S mapping(F f, S x) { return f + x; } F composition(F f, F g) { return f + g; } F id() { return 0; } using segtree = atcoder::lazy_segtree; } // namespace add_min namespace update_sum { struct S { int64_t val; int64_t len; }; S op(S a, S b) { return {a.val + b.val, a.len + b.len}; } S e() { return {0, 0}; } using F = std::optional; S mapping(F f, S x) { if (f) x.val = *f * x.len; return x; } F composition(F f, F g) { return f ? f : g; } F id() { return std::nullopt; } class segtree : public atcoder::lazy_segtree { public: segtree() : lazy_segtree() {} explicit segtree(int n) : lazy_segtree(std::vector(n, {0, 1})) {} explicit segtree(const std::vector& v) : lazy_segtree(itos(v)) {} private: static std::vector itos(const std::vector& v) { std::vector w(v.size()); for (size_t i = 0; i < v.size(); ++i) { w[i] = {v[i], 1}; } return w; } }; } // namespace update_sum namespace add_sum { struct S { int64_t val; int64_t len; }; S op(S a, S b) { return {a.val + b.val, a.len + b.len}; } S e() { return {0, 0}; } using F = int64_t; S mapping(F f, S x) { return {x.val + f * x.len, x.len}; } F composition(F f, F g) { return f + g; } F id() { return 0; } class segtree : public atcoder::lazy_segtree { public: segtree() : lazy_segtree() {} explicit segtree(int n) : lazy_segtree(std::vector(n, {0, 1})) {} explicit segtree(const std::vector& v) : lazy_segtree(itos(v)) {} private: static std::vector itos(const std::vector& v) { std::vector w(v.size()); for (size_t i = 0; i < v.size(); ++i) { w[i] = {v[i], 1}; } return w; } }; } // namespace add_sum template class SegmentTree { public: using Operation = std::function; SegmentTree(int size, Operation operation, T identity = T()) : operation_(operation), identity_(identity) { int two = 1; while (two < size) { two <<= 1; } v_.resize(two * 2 - 1, identity_); } void Set(int i, T v) { int index = Leaf(i); while (true) { v_[index] = v; if (index == 0) break; v = operation_(v, v_[index + (IsRight(index) ? -1 : 1)]); index = Parent(index); } } T Get(int i) const { return Aggregate(i, i + 1); } T Aggregate(int begin, int end) const { int l = Leaf(begin), r = Leaf(end); T v = identity_; while (l < r) { if (IsRight(l)) { v = operation_(v, v_[l]); ++l; } l = Parent(l); if (IsRight(r)) { v = operation_(v, v_[r - 1]); } r = Parent(r); } return v; } private: int Leaf(int i) const { return i + (v_.size() >> 1); } bool IsRight(int i) const { return !(i & 1); } int Parent(int i) const { return (i - 1) >> 1; } const Operation operation_; const T identity_; std::vector v_; }; template class AddSegmentTree : public SegmentTree { public: AddSegmentTree(int n) : SegmentTree(n, [](T a, T b) { return a + b; }) {} }; #ifndef GRAPH_H_ #define GRAPH_H_ template class Graph { public: struct Edge { int from, to; T weight; }; Graph(int n) : edges_(n) {} void AddEdge(int from, int to, T weight = T()) { edges_[from].push_back({from, to, weight}); } const std::vector &Edges(int from) const { return edges_[from]; } std::vector &MutableEdges(int from) { return edges_[from]; } int NumVertices() const { return edges_.size(); } bool IsTree() const { std::vector visited(NumVertices()); auto rec = [&](auto rec, int node, int parent) -> bool { if (visited[node]) return false; visited[node] = true; for (const Edge &e : Edges(node)) { if (e.to != parent && !rec(rec, e.to, node)) { return false; } } return true; }; return rec(rec, 0, -1); } private: std::vector> edges_; }; #endif template class HeavyLightDecomposition { public: HeavyLightDecomposition(const Graph& g, int root = 0) : g_(g) { #ifdef DEBUG assert(g.IsTree()); #endif int n = g.NumVertices(); attr_.resize(n); Dfs1(root, -1, 0); int index = 0; Dfs2(root, -1, root, index); } std::vector> Query( int u, int v, bool include_lca = false) const { std::vector> ret; while (Begin(u) != Begin(v)) { if (Depth(Begin(u)) < Depth(Begin(v))) std::swap(u, v); ret.emplace_back(Index(Begin(u)), Index(u) + 1); u = Parent(Begin(u)); } u = Index(u), v = Index(v); if (u > v) std::swap(u, v); ret.emplace_back(u + (include_lca ? 0 : 1), v + 1); return ret; } int LCA(int u, int v) const { while (Begin(u) != Begin(v)) { if (Depth(Begin(u)) < Depth(Begin(v))) std::swap(u, v); u = Parent(Begin(u)); } return Depth(u) < Depth(v) ? u : v; } int32_t Index(int node) const { return attr_[node].index; } int32_t Parent(int node) const { return attr_[node].parent; } private: void Dfs1(int node, int parent, int depth) { Attr& a = attr_[node]; a.depth = depth; a.parent = parent; a.size = 1; a.heavy = -1; for (const auto& e : g_.Edges(node)) { if (e.to == parent) continue; Dfs1(e.to, node, depth + 1); a.size += Size(e.to); if (a.heavy == -1 || Size(a.heavy) < Size(e.to)) { a.heavy = e.to; } } } void Dfs2(int node, int parent, int begin, int& index) { Attr& a = attr_[node]; a.index = index++; a.begin = begin; if (a.heavy == -1) return; Dfs2(a.heavy, node, begin, index); for (const auto& e : g_.Edges(node)) { if (e.to == parent || e.to == a.heavy) continue; Dfs2(e.to, node, e.to, index); } } int32_t Begin(int node) const { return attr_[node].begin; } int32_t Depth(int node) const { return attr_[node].depth; } int32_t Heavy(int node) const { return attr_[node].heavy; } int32_t Size(int node) const { return attr_[node].size; } const Graph& g_; struct Attr { int32_t begin; int32_t depth; int32_t heavy; int32_t index; int32_t parent; int32_t size; }; std::vector attr_; }; #ifndef MODINT_H_ #define MODINT_H_ namespace { using i32 = int32_t; using i64 = int64_t; } // namespace #define BIN_OPS(F) F(+) F(-) F(*) F(/) #define CMP_OPS(F) F(!=) F(<) F(<=) F(==) F(>) F(>=) template class ModInt { public: ModInt() : n_(0) {} ModInt(i64 n) : n_(n % Mod) { if (n_ < 0) { // In C++, (-n)%m == -(n%m). n_ += Mod; } } ModInt& operator+=(const ModInt& m) { n_ += m.n_; if (n_ >= Mod) { n_ -= Mod; } return *this; } ModInt& operator++() { return (*this) += 1; } ModInt& operator-=(const ModInt& m) { n_ -= m.n_; if (n_ < 0) { n_ += Mod; } return *this; } ModInt& operator--() { return (*this) -= 1; } ModInt& operator*=(const ModInt& m) { n_ = i64(n_) * m.n_ % Mod; return *this; } ModInt& operator/=(const ModInt& m) { *this *= m.Inv(); return *this; } #define DEFINE(op) \ ModInt operator op(const ModInt& m) const { return ModInt(*this) op## = m; } BIN_OPS(DEFINE) #undef DEFINE #define DEFINE(op) \ bool operator op(const ModInt& m) const { return n_ op m.n_; } CMP_OPS(DEFINE) #undef DEFINE ModInt operator-() const { return ModInt(-n_); } ModInt Pow(i64 n) const { if (n < 0) { return Inv().Pow(-n); } // a * b ^ n = answer. ModInt a = 1, b = *this; while (n != 0) { if (n & 1) { a *= b; } n /= 2; b *= b; } return a; } ModInt Inv() const { #if DEBUG assert(n_ != 0); #endif if (n_ > kMaxCacheSize) { // Compute the inverse based on Fermat's little theorem. Note that this // only works when n_ and Mod are relatively prime. The theorem says that // n_^(Mod-1) = 1 (mod Mod). So we can compute n_^(Mod-2). return Pow(Mod - 2); } for (i64 i = inv_.size(); i <= n_; ++i) { inv_.push_back(i <= 1 ? i : (Mod / i * -inv_[Mod % i])); } return inv_[n_]; } i64 value() const { return n_; } static ModInt Fact(i64 n) { #if DEBUG assert(0 <= n && n <= kMaxCacheSize); #endif for (i64 i = fact_.size(); i <= n; ++i) { fact_.push_back(i == 0 ? 1 : fact_.back() * i); } return fact_[n]; } static ModInt InvFact(i64 n) { #if DEBUG assert(0 <= n && n <= kMaxCacheSize); #endif for (i64 i = inv_fact_.size(); i <= n; ++i) { inv_fact_.push_back(i == 0 ? 1 : inv_fact_.back() / i); } return inv_fact_[n]; } static ModInt Comb(i64 n, i64 k) { if (!Valid(n, k)) return 0; return Perm(n, k) * InvFact(k); } static ModInt CombSlow(i64 n, i64 k) { if (!Valid(n, k)) return 0; return PermSlow(n, k) * InvFact(k); } static ModInt Perm(i64 n, i64 k) { if (!Valid(n, k)) return 0; #if DEBUG assert(n <= kMaxCacheSize && "n is too large. If k is small, consider using PermSlow."); #endif return Fact(n) * InvFact(n - k); } static ModInt PermSlow(i64 n, i64 k) { if (!Valid(n, k)) return 0; ModInt p = 1; for (i64 i = 0; i < k; ++i) { p *= (n - i); } return p; } private: static bool Valid(i64 n, i64 k) { return 0 <= n && 0 <= k && k <= n; } i32 n_; inline static std::vector fact_; inline static std::vector inv_fact_; inline static std::vector inv_; static const i64 kMaxCacheSize = 10000000; }; #define DEFINE(op) \ template \ ModInt operator op(const T& t, const ModInt& m) { \ return ModInt(t) op m; \ } BIN_OPS(DEFINE) CMP_OPS(DEFINE) #undef DEFINE template std::ostream& operator<<(std::ostream& out, const ModInt& m) { out << m.value(); return out; } #endif #include template struct is_dereferenceable : std::false_type {}; template struct is_dereferenceable())>> : std::true_type {}; template struct is_iterable : std::false_type {}; template struct is_iterable())), decltype(std::end(std::declval()))>> : std::true_type {}; template struct is_applicable : std::false_type {}; template struct is_applicable::value)>> : std::true_type {}; template void debug(const T& value, const Ts&... args); template void debug(const T& v) { if constexpr (is_dereferenceable::value) { std::cerr << "{"; if (v) { debug(*v); } else { std::cerr << "nil"; } std::cerr << "}"; } else if constexpr (is_iterable::value && !std::is_same::value) { std::cerr << "{"; for (auto it = std::begin(v); it != std::end(v); ++it) { if (it != std::begin(v)) std::cerr << ", "; debug(*it); } std::cerr << "}"; } else if constexpr (is_applicable::value) { std::cerr << "{"; std::apply([](const auto&... args) { debug(args...); }, v); std::cerr << "}"; } else { std::cerr << v; } } template void debug(const T& value, const Ts&... args) { debug(value); std::cerr << ", "; debug(args...); } #if DEBUG #define dbg(...) \ do { \ cerr << #__VA_ARGS__ << ": "; \ debug(__VA_ARGS__); \ cerr << " (L" << __LINE__ << ")\n"; \ } while (0) #else #define dbg(...) #endif void read_from_cin() {} template void read_from_cin(T& value, Ts&... args) { std::cin >> value; read_from_cin(args...); } #define rd(type, ...) \ type __VA_ARGS__; \ read_from_cin(__VA_ARGS__); #define ints(...) rd(int, __VA_ARGS__); #define strings(...) rd(string, __VA_ARGS__); // Strings used for yes/no questions. Defined as variables so that it can be // adjusted for each contest site. const char *yes_str = "Yes", *no_str = "No"; template void write_to_cout(const T& value) { if constexpr (std::is_same::value) { std::cout << (value ? yes_str : no_str); } else if constexpr (is_iterable::value && !std::is_same::value) { for (auto it = std::begin(value); it != std::end(value); ++it) { if (it != std::begin(value)) std::cout << " "; std::cout << *it; } } else { std::cout << value; } } template void write_to_cout(const T& value, const Ts&... args) { write_to_cout(value); std::cout << ' '; write_to_cout(args...); } #define wt(...) \ do { \ write_to_cout(__VA_ARGS__); \ cout << '\n'; \ } while (0) #define all(x) (x).begin(), (x).end() #define eb(...) emplace_back(__VA_ARGS__) #define pb(...) push_back(__VA_ARGS__) #define dispatch(_1, _2, _3, name, ...) name #define as_i64(x) \ ( \ [] { \ static_assert( \ std::is_integral< \ typename std::remove_reference::type>::value, \ "rep macro supports std integral types only"); \ }, \ static_cast(x)) #define rep3(i, a, b) for (int64_t i = as_i64(a); i < as_i64(b); ++i) #define rep2(i, n) rep3(i, 0, n) #define rep1(n) rep2(_loop_variable_, n) #define rep(...) dispatch(__VA_ARGS__, rep3, rep2, rep1)(__VA_ARGS__) #define rrep3(i, a, b) for (int64_t i = as_i64(b) - 1; i >= as_i64(a); --i) #define rrep2(i, n) rrep3(i, 0, n) #define rrep1(n) rrep2(_loop_variable_, n) #define rrep(...) dispatch(__VA_ARGS__, rrep3, rrep2, rrep1)(__VA_ARGS__) #define each3(k, v, c) for (auto&& [k, v] : c) #define each2(e, c) for (auto&& e : c) #define each(...) dispatch(__VA_ARGS__, each3, each2)(__VA_ARGS__) template std::istream& operator>>(std::istream& is, std::vector& v) { for (T& vi : v) is >> vi; return is; } template std::istream& operator>>(std::istream& is, std::pair& p) { is >> p.first >> p.second; return is; } template bool chmax(T& a, U b) { if (a < b) { a = b; return true; } return false; } template bool chmin(T& a, U b) { if (a > b) { a = b; return true; } return false; } template auto max(T a, U b) { return a > b ? a : b; } template auto min(T a, U b) { return a < b ? a : b; } template auto max(const T& v) { return *std::max_element(v.begin(), v.end()); } template auto min(const T& v) { return *std::min_element(v.begin(), v.end()); } template int64_t sz(const T& v) { return std::size(v); } template int64_t popcount(T i) { return std::bitset::digits>(i).count(); } template bool hasbit(T s, int i) { return std::bitset::digits>(s)[i]; } template auto div_floor(T n, U d) { if (d < 0) { n = -n; d = -d; } if (n < 0) { return -((-n + d - 1) / d); } return n / d; }; template auto div_ceil(T n, U d) { if (d < 0) { n = -n; d = -d; } if (n < 0) { return -(-n / d); } return (n + d - 1) / d; } template bool even(T x) { return x % 2 == 0; } std::array, 4> adjacent(int64_t i, int64_t j) { return {{{i + 1, j}, {i, j + 1}, {i - 1, j}, {i, j - 1}}}; } bool inside(int64_t i, int64_t j, int64_t I, int64_t J) { return 0 <= i && i < I && 0 <= j && j < J; } template void sort(T& v) { return std::sort(v.begin(), v.end()); } template void sort(T& v, Compare comp) { return std::sort(v.begin(), v.end(), comp); } template void reverse(T& v) { return std::reverse(v.begin(), v.end()); } template typename T::value_type accumulate(const T& v) { return std::accumulate(v.begin(), v.end(), typename T::value_type()); } // big = 2305843009213693951 = 2^61-1 ~= 2.3*10^18 const int64_t big = std::numeric_limits::max() / 4; using i64 = int64_t; using i32 = int32_t; template using low_priority_queue = std::priority_queue, std::greater>; template using V = std::vector; template using VV = V>; void Main(); int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); std::cout << std::fixed << std::setprecision(20); Main(); return 0; } const auto& Fix = boost::hana::fix; using namespace std; #define int i64 using mint = ModInt<>; using S = pair; S op(S a, S b) { return {a.first + b.first, a.second + b.second}; }; S e() { return {0, 0}; } using F = mint; S mapping(F f, S x) { return {x.first + f * x.second, x.second}; } F composition(F f, F g) { return f + g; } F id() { return 0; } using segtree = atcoder::lazy_segtree; void Main() { ints(n); V s(n), c(n); cin >> s >> c; Graph g(n); rep(n - 1) { ints(a, b); --a, --b; g.AddEdge(a, b); g.AddEdge(b, a); } HeavyLightDecomposition hld(g); segtree t(n); rep(i, n) t.set(hld.Index(i), {s[i], c[i]}); ints(q); rep(q) { ints(k); if (k == 0) { ints(x, y, z); --x, --y; each(l, r, hld.Query(x, y, true)) t.apply(l, r, z); } else { ints(x, y); --x, --y; mint ans = 0; each(l, r, hld.Query(x, y, true)) ans += t.prod(l, r).first; wt(ans); } } }