#pragma GCC optimize("O3") #include // clang-format off using namespace std; using ll = long long int; #define all(v) (v).begin(),(v).end() #define repeat(cnt,l) for(typename remove_const::type>::type cnt={};(cnt)<(l);++(cnt)) #define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt)) #define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt)) #define upto(cnt,b,e,step) for(auto cnt=(b);(cnt)<=(e);(cnt)+=(step)) #define downto(cnt,b,e,step) for(auto cnt=(b);(e)<=(cnt);(cnt)-=(step)) const long long MD = 998244353; const long double PI = 3.1415926535897932384626433832795L; template inline ostream& operator <<(ostream &o, const pair p) { o << '(' << p.first << ':' << p.second << ')'; return o; } template inline T& chmax(T& to, const T& val) { return to = max(to, val); } template inline T& chmin(T& to, const T& val) { return to = min(to, val); } void bye(string s, int code = 0) { cout << s << endl; exit(code); } mt19937_64 randdev(8901016); template::value>::type* = nullptr> inline T rand(T l, T h, Random& rand = randdev) { return uniform_int_distribution(l, h)(rand); } template::value>::type* = nullptr> inline T rand(T l, T h, Random& rand = randdev) { return uniform_real_distribution(l, h)(rand); }template static ostream& operator<<(ostream& o, const std::vector& v) { o << "[ "; for(const auto& e : v) o< struct MyRangeFormat{ I b,e; MyRangeFormat(I _b, I _e):b(_b),e(_e){} }; template static ostream& operator<<(ostream& o, const MyRangeFormat& f) { o << "[ "; iterate(i,f.b,f.e) o<<*i<<' '; return o << ']'; } template struct MyMatrixFormat{ const I& p; long long n, m; MyMatrixFormat(const I& _p, long long _n, long long _m):p(_p),n(_n),m(_m){} }; template static ostream& operator<<(ostream& o, const MyMatrixFormat& f) { o<<'\n'; repeat(i,(f.n)) { repeat(j,f.m) o<(m,m+w)) #define FMTR(b,e) (MyRangeFormat(b,e)) #define FMTV(v) FMTR(v.begin(),v.end()) #define FMTM(m,h,w) (MyMatrixFormat(m,h,w)) #if defined(_WIN32) || defined(_WIN64) #define getc_x _getc_nolock #define putc_x _putc_nolock #elif defined(__GNUC__) #define getc_x getc_unlocked #define putc_x putc_unlocked #else #define getc_x getc #define putc_x putc #endif class MaiScanner { FILE* fp_; constexpr bool isvisiblechar(char c) noexcept { return (0x21<=(c)&&(c)<=0x7E); } public: inline MaiScanner(FILE* fp):fp_(fp){} template void input_integer(T& var) noexcept { var = 0; T sign = 1; int cc = getc_x(fp_); for (; cc < '0' || '9' < cc; cc = getc_x(fp_)) if (cc == '-') sign = -1; for (; '0' <= cc && cc <= '9'; cc = getc_x(fp_)) var = (var << 3) + (var << 1) + cc - '0'; var = var * sign; } inline int c() noexcept { return getc_x(fp_); } template::value, nullptr_t>::type = nullptr> inline MaiScanner& operator>>(T& var) noexcept { input_integer(var); return *this; } inline MaiScanner& operator>>(string& var) { int cc = getc_x(fp_); for (; !isvisiblechar(cc); cc = getc_x(fp_)); for (; isvisiblechar(cc); cc = getc_x(fp_)) var.push_back(cc); return *this; } template inline void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; } }; class MaiPrinter { FILE* fp_; public: inline MaiPrinter(FILE* fp):fp_(fp){} template void output_integer(T var) noexcept { if (var == 0) { putc_x('0', fp_); return; } if (var < 0) putc_x('-', fp_), var = -var; char stack[32]; int stack_p = 0; while (var) stack[stack_p++] = '0' + (var % 10), var /= 10; while (stack_p) putc_x(stack[--stack_p], fp_); } inline MaiPrinter& operator<<(char c) noexcept { putc_x(c, fp_); return *this; } template::value, nullptr_t>::type = nullptr> inline MaiPrinter& operator<<(T var) noexcept { output_integer(var); return *this; } inline MaiPrinter& operator<<(const char* str_p) noexcept { while (*str_p) putc_x(*(str_p++), fp_); return *this; } inline MaiPrinter& operator<<(const string& str) { const char* p = str.c_str(); const char* l = p + str.size(); while (p < l) putc_x(*p++, fp_); return *this; } template void join(IT begin, IT end, char sep = ' ') { for (bool b = 0; begin != end; ++begin, b = 1) b ? *this << sep << *begin : *this << *begin; } }; MaiScanner scanner(stdin); MaiPrinter printer(stdout); // clang-format on class DGraphF { public: typedef int cap_t; int n_; struct Arc { int from, to; // 残量 cap_t left; // 容量 cap_t cap; Arc(int from = 0, int to = 0, cap_t w = 1) : from(from), to(to), left(w), cap(w) {} inline bool operator<(const Arc& a) const { return (left != a.left) ? left < a.left : (left < a.left) | (cap < a.cap) | (from < a.from) | (to < a.to); } inline bool operator==(const Arc& a) const { return (from == a.from) && (to == a.to) && (left == a.left) && (cap == a.cap); } }; vector> vertex_to; vector> vertex_from; vector edges; explicit DGraphF(int n = 1) : n_(n), vertex_to(n), vertex_from(n) {} void connect(int from, int to, cap_t left) { vertex_to[(int)from].push_back((int)edges.size()); // toto vertex_from[(int)to].push_back((int)edges.size()); // fromfrom edges.emplace_back(from, to, left); } inline int size() const { return n_; } }; void dinic(DGraphF& graph, vector& result, int i_source, int i_sink) { assert(i_source != i_sink); result.resize(graph.n_); vector dist(graph.n_); vector visited(graph.n_); function _dfs = [&](int u, int i_sink, DGraphF::cap_t mini) -> DGraphF::cap_t { // DAG // TODO: 経路再利用 if (i_sink == u) return mini; if (visited[u]) return -1; visited[u] = true; DGraphF::cap_t sumw = 0; bool term = true; for (int edgeidx : graph.vertex_to[u]) { auto& edge = graph.edges[edgeidx]; if (edge.left > 0 && dist[u] > dist[edge.to]) { DGraphF::cap_t f = (mini < 0) ? edge.left : min(edge.left, mini); f = _dfs(edge.to, i_sink, f); if (f == -1) continue; edge.left -= f; result[edge.to] += f; sumw += f; mini -= f; term = false; visited[u] = false; // TODO: 末尾では? if (mini == 0) return sumw; } } for (int edgeidx : graph.vertex_from[u]) { auto& edge = graph.edges[edgeidx]; if (edge.cap > edge.left && dist[u] > dist[edge.from]) { DGraphF::cap_t f = (mini < 0) ? (edge.cap - edge.left) : min(edge.cap - edge.left, mini); f = _dfs(edge.from, i_sink, f); if (f == -1) continue; edge.left += f; result[edge.to] -= f; sumw += f; mini -= f; term = false; visited[u] = false; if (mini == 0) return sumw; } } return term ? -1 : sumw; }; queue que; for (int distbegin = 0;; distbegin += (int)graph.n_) { // sinkからsourceへの距離を計算. que.emplace(i_sink); dist[i_sink] = distbegin + 1; while (!que.empty()) { int v = que.front(); que.pop(); for (int edgeidx : graph.vertex_from[v]) { const auto edge = graph.edges[edgeidx]; if (0 < edge.left && dist[edge.from] <= distbegin) { dist[edge.from] = dist[v] + 1; que.push(edge.from); } } for (int edgeidx : graph.vertex_to[v]) { const auto edge = graph.edges[edgeidx]; if (edge.left < edge.cap && dist[edge.to] <= distbegin) { dist[edge.to] = dist[v] + 1; que.push(edge.to); } } } fill(visited.begin(), visited.end(), false); if (dist[i_source] <= distbegin) break; else result[i_source] += _dfs(i_source, i_sink, -1); } } // // int main() { int N, M; scanner >> N >> M; const int n = 2 + M + N*3 + N; constexpr int v_s = 0; constexpr int v_t = 1; DGraphF graph(n); repeat(i, M) { int p,q,a,b; scanner >> p >> q >> a >> b; --a; --b; --p; --q; graph.connect(v_s, 2 + i, 1); graph.connect(2 + i, 2 + M + p*3 + a, 1); graph.connect(2 + i, 2 + M + q*3 + b, 1); } repeat(i, N) { repeat(j, 3) graph.connect(2 + M + i*3 + j, 2 + M + 3 * N + i, 1); graph.connect(2 + M + 3 * N + i, v_t, 1); } vector result; dinic(graph, result, v_s, v_t); if (result[v_t] == M) { printer << "Yes\n"; repeat(i, N) { int x = 1; // << any repeat(j, 3) { if (result[2 + M + i*3+j]) x = j; } printer << x + 1 << ' '; } } else { printer << "-1"; } return 0; }