# return (\sum_{i=0}^{n-1} ((a*i+b)//m))
def floor_sum(n, m, a, b):
    ret = 0
    while True:
        if a >= m:
            ret += ((n - 1) * n) // 2 * (a // m)
            a %= m
        if b >= m:
            ret += n * (b // m)
            b %= m
        y_max = (a * n + b) // m
        if y_max == 0:
            return ret
        x_max = y_max * m - b
        ret += (n - (x_max + a - 1) // a) * y_max
        n, m, a, b = y_max, a, m, -x_max % a

def solve():
    n, a, b = map(int, input().split())
    ans = 0
    max_ = n - a
    min_ = n % a
    if max_ > 0:
        ans += (max_ + min_) * (max_ - min_ + a) // a // 2
        
    max_ = n - b
    min_ = n % b
    if max_ > 0:
        ans += (max_ + min_) * (max_ - min_ + b) // b // 2
    
    ans -= floor_sum(n // a, b, a, n % a)
    print(ans)
    
for _ in range(int(input())):
    solve()