from math import gcd, sqrt def prime_factor(n): res = [] x, y = n, 2 while y * y <= x: if not x % y: res.append(y) while not x % y: x //= y y += 1 if x > 1: res.append(x) return res def primitive_root(m): if m == 2: return 1 divs = prime_factor(m - 1) g = 2 while True: for d in divs: if pow(g, (m - 1) // d, m) == 1: break else: return g g += 1 def discrete_logarithm(x, y, m): if m == 1: return 0 if y == 1: return 0 if x == y == 0: return 1 sq = int(sqrt(m)) + 1 powx = {} p = 1 for i in range(sq + 1): if p % m == y: return i powx[p * y % m] = i p *= x p %= m z = pow(x, sq, m) g = z for i in range(1, sq + 1): if g in powx: res = i * sq - powx[g] if pow(x, res, m) == y: return res g *= z g %= m return -1 def inv_gcd(a, b): a %= b if a == 0: return b, 0 s, t, m0, m1 = b, a, 0, 1 while t: u = s // t s -= t * u m0 -= m1 * u s, t = t, s m0, m1 = m1, m0 if m0 < 0: m0 += b // s return s, m0 def inv_mod(x, m): g, im = inv_gcd(x, m) return im def kth_root(k, y, p): if k == 0: if y == 1: return 0 else: return -1 if y == 0: return 0 g = gcd(k, p - 1) m = (p - 1) // g if pow(a, m, p) != 1: return -1 r = primitive_root(p) l = discrete_logarithm(r, y, p) if l % g: return -1 res = pow(r, l // g * inv_mod(k // g, m) % m, p) return res import sys input = sys.stdin.buffer.readline T = int(input()) for _ in range(T): p, k, a = map(int, input().split()) print(kth_root(k, a, p))