class lazy_segtree: #遅延評価セグメント木 def __init__(s, op, e, mapping, composition, id, v): if type(v) is int: v = [e()] * v s._n = len(v) s.log = s.ceil_pow2(s._n) s.size = 1 << s.log s.d = [e()] * (2 * s.size) s.lz = [id()] * s.size s.e = e s.op = op s.mapping = mapping s.composition = composition s.id = id for i in range(s._n): s.d[s.size + i] = v[i] for i in range(s.size - 1, 0, -1): s.update(i) # 1点更新 def set(s, p, x): p += s.size for i in range(s.log, 0, -1): s.push(p >> i) s.d[p] = x for i in range(1, s.log + 1): s.update(p >> i) # 1点取得 def get(s, p): p += s.size for i in range(s.log, 0, -1): s.push(p >> i) return s.d[p] # 区間演算 def prod(s, l, r): if l == r: return s.e() l += s.size r += s.size for i in range(s.log, 0, -1): if (((l >> i) << i) != l): s.push(l >> i) if (((r >> i) << i) != r): s.push(r >> i) sml, smr = s.e(), s.e() while (l < r): if l & 1: sml = s.op(sml, s.d[l]) l += 1 if r & 1: r -= 1 smr = s.op(s.d[r], smr) l >>= 1 r >>= 1 return s.op(sml, smr) # 全体演算 def all_prod(s): return s.d[1] # 1点写像 def apply(s, p, f): p += s.size for i in range(s.log, 0, -1): s.push(p >> i) s.d[p] = s.mapping(f, s.d[p]) for i in range(1, s.log + 1): s.update(p >> i) # 区間写像 def apply(s, l, r, f): if l == r: return l += s.size r += s.size for i in range(s.log, 0, -1): if (((l >> i) << i) != l): s.push(l >> i) if (((r >> i) << i) != r): s.push((r - 1) >> i) l2, r2 = l, r while l < r: if l & 1: sml = s.all_apply(l, f) l += 1 if r & 1: r -= 1 smr = s.all_apply(r, f) l >>= 1 r >>= 1 l, r = l2, r2 for i in range(1, s.log + 1): if (((l >> i) << i) != l): s.update(l >> i) if (((r >> i) << i) != r): s.update((r - 1) >> i) # L固定時の最長区間のR def max_right(s, l, g): if l == s._n: return _n l += s.size for i in range(s.log, 0, -1): s.push(l >> i) sm = s.e() while True: while (l % 2 == 0): l >>= 1 if not g(s.op(sm, s.d[l])): while l < s.size: s.push(l) l = 2 * l if g(s.op(sm, s.d[l])): sm = s.op(sm, s.d[l]) l += 1 return l - s.size sm = s.op(sm, s.d[l]) l += 1 if (l & -l) == l: break return s._n # R固定時の最長区間のL def min_left(s, r, g): if r == 0: return 0 r += s.size for i in range(s.log, 0, -1): s.push((r - 1) >> i) sm = s.e() while True: r -= 1 while r > 1 and (r % 2): r >>= 1 if not g(s.op(s.d[r], sm)): while r < s.size: s.push(r) r = 2 * r + 1 if g(s.op(s.d[r], sm)): sm = s.op(s.d[r], sm) r -= 1 return r + 1 - s.size sm = s.op(s.d[r], sm) if (r & - r) == r: break return 0 def update(s, k): s.d[k] = s.op(s.d[2 * k], s.d[2 * k + 1]) def all_apply(s, k, f): s.d[k] = s.mapping(f, s.d[k]) if k < s.size: s.lz[k] = s.composition(f, s.lz[k]) def push(s, k): s.all_apply(2 * k, s.lz[k]) s.all_apply(2 * k + 1, s.lz[k]) s.lz[k] = s.id() def ceil_pow2(s, n): x = 0 while (1 << x) < n: x += 1 return x import sys MOD = 10**9+7 def e(): return 0 def op(s, t): sv, sn = s >> 32, s % (1 << 32) tv, tn = t >> 32, t % (1 << 32) return (((sv + tv) % MOD) << 32) + sn + tn def mapping(f, a): fb, fc = f >> 32, f % (1 << 32) av, an = a >> 32, a % (1 << 32) return (((fb * av + fc * an) % MOD) << 32) + an def composition(f, g): fb, fc = f >> 32, f % (1 << 32) gb, gc = g >> 32, g % (1 << 32) return ((fb * gb % MOD) << 32) + ((gc * fb + fc) % MOD) def id(): return 1 << 32 N,M,K = map(int,input().split()) lsLR = [tuple(map(int,input().split())) for i in range(M)] ids = 1 ls = [ids]*(N+1) ls[1] += 1<<32 dp = lazy_segtree(op, e, mapping, composition, id, ls) for i in range(K): dp2 = lazy_segtree(op, e, mapping, composition, id, [ids]*(N+1)) for j in range(M): ad = dp.prod(lsLR[j][0], lsLR[j][1]+1)>>32 dp2.apply(lsLR[j][0], lsLR[j][1]+1,(1<<32)+ad) dp = dp2 print(dp.get(N)>>32)