#Dinic法で最大流を求める #deque のimport が必要 #逆辺追加しなきゃいけないから、 #グラフの構成はadd_edgeで行う #最大流は flow メソッドで from collections import deque class Dinic: def __init__(self,N): self.N = N self.G = [[] for _ in range(N)] self.level = None self.progress = None self.edge = [] def add_edge(self,fr,to,cap): forward = [to,cap,None] forward[2] = backward = [fr,0,forward] self.G[fr].append(forward) self.G[to].append(backward) self.edge.append(forward) def add_multi_edge(self,v1,v2,cap1,cap2): edge1 = [v2,cap1,None] edge1[2] = edge2 = [v1,cap2,edge1] self.G[v1].append(edge1) self.G[v2].append(edge2) self.edge.append(edge1) def get_edge(self,i): return self.edge[i] # i 回目に追加した辺のポインタを返す # 0-index, 順辺のみ def bfs(self,s,t): self.level = level = [None] * self.N q = deque([s]) level[s] = 0 G = self.G while q: v = q.popleft() lv = level[v] + 1 for w,cap,_ in G[v]: if cap and level[w] is None: level[w] = lv q.append(w) return level[t] is not None def dfs(self, v, t, f): if v == t: return f level = self.level for e in self.it[v]: w, cap, rev = e if cap and level[v] < level[w]: d = self.dfs(w, t, min(f, cap)) if d: e[1] -= d rev[1] += d return d else: pass else: pass return 0 def flow(self, s, t): flow = 0 INF = 10**9 + 7 G = self.G while self.bfs(s, t): *self.it, = map(iter, self.G) f = INF while f: f = self.dfs(s, t, INF) flow += f return flow def min_cut(self,s): #最小カットを実現する頂点の分割を与える #True なら source側 #False なら sink側 visited = [False for i in range(self.N)] q = deque([s]) while q: now = q.popleft() visited[now] = True for to,cap,_ in self.G[now]: if cap and not visited[to]: visited[to] = True q.append(to) return visited N,M,dd = map(int,input().split()) G = [[] for _ in range(N)] d = dict() count = 0 for _ in range(M): u,v,p,q,w = map(int,input().split()) u -= 1 v -= 1 G[u].append((v,p,q,w)) d[(v,p,q,w)] = count count += 1 dinic = Dinic(M + 2) s = M t = M + 1 inf = 10 ** 18 for v,p,q,w in d: count = d[(v,p,q,w)] for vv,pp,qq,ww in G[v]: count2 = d[(vv,pp,qq,ww)] if q + dd <= pp: dinic.add_edge(count,count2,ww) if v == N - 1: dinic.add_edge(count,t,inf) for v,p,q,w in G[0]: dinic.add_edge(s,d[(v,p,q,w)],w) print(dinic.flow(s,t))