#include #include #include #include #include #include #include #include using namespace std; #include using mint = atcoder::static_modint<998244353>; // Upper Hessenberg reduction of square matrices // Complexity: O(n^3) // Reference: // http://www.phys.uri.edu/nigh/NumRec/bookfpdf/f11-5.pdf template void hessenberg_reduction(std::vector> &M) { assert(M.size() == M[0].size()); const int N = M.size(); for (int r = 0; r < N - 2; r++) { int piv = -1; for (int j = r + 1; j < N; ++j) if (M[j][r] != 0) { piv = j; break; } if (piv < 0) continue; for (int i = 0; i < N; i++) std::swap(M[r + 1][i], M[piv][i]); for (int i = 0; i < N; i++) std::swap(M[i][r + 1], M[i][piv]); const auto rinv = Tp(1) / M[r + 1][r]; for (int i = r + 2; i < N; i++) { const auto n = M[i][r] * rinv; for (int j = 0; j < N; j++) M[i][j] -= M[r + 1][j] * n; for (int j = 0; j < N; j++) M[j][r + 1] += M[j][i] * n; } } } // Characteristic polynomial of matrix M (|xI - M|) // Complexity: O(n^3) // R. Rehman, I. C. Ipsen, "La Budde's Method for Computing Characteristic Polynomials," 2011. template std::vector characteristic_poly(std::vector> &M) { hessenberg_reduction(M); const int N = M.size(); std::vector> p(N + 1); // p[i + 1] = (Characteristic polynomial of i-th leading principal minor) p[0] = {1}; for (int i = 0; i < N; i++) { p[i + 1].assign(i + 2, 0); for (int j = 0; j < i + 1; j++) p[i + 1][j + 1] += p[i][j]; for (int j = 0; j < i + 1; j++) p[i + 1][j] -= p[i][j] * M[i][i]; Tp betas = 1; for (int j = i - 1; j >= 0; j--) { betas *= M[j + 1][j]; Tp hb = -M[j][i] * betas; for (int k = 0; k < j + 1; k++) p[i + 1][k] += hb * p[j][k]; } } return p[N]; } int main() { int N, a, b = 0; mint prod = 1; cin >> N; vector mat0(N, vector(N)); vector mat1(N, vector(N)); for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { cin >> a; mat0[i][j] = a; } for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { cin >> a; mat1[i][j] = a; } for (int i = 0; i < N; ++i) { int piv = -1; for (int h = i; h < N; ++h) { if (mat1[h][i] != 0) piv = h; } if (piv < 0) { for (int h = 0; h < i; h++) { for (int hh = 0; hh < N; hh++) mat0[hh][i] -= mat0[hh][h] * mat1[h][i]; mat1[h][i] = 0; } b++; for (int h = 0; h < N; h++) { mat1[h][i] = mat0[h][i]; mat0[h][i] = 0; if (h >= i && mat1[h][i] != 0) piv = h; } if (piv >= 0) { i--; continue; } for (int h = 0; h <= N; h++) cout << "0\n"; return 0; } assert(piv >= i); swap(mat0[i], mat0[piv]); swap(mat1[i], mat1[piv]); if (i != piv) { for (int w = 0; w < N; ++w) { mat0[i][w] *= -1; mat1[i][w] *= -1; } } mint inv = mat1[i][i].inv(); prod *= mat1[i][i]; for (int w = 0; w < N; ++w) { mat0[i][w] *= inv; mat1[i][w] *= inv; } for (int h = 0; h < N; ++h) { if (h == i) continue; if (mat1[h][i] == 0) continue; const mint coeff = mat1[h][i]; for (int w = 0; w < N; ++w) { mat1[h][w] -= coeff * mat1[i][w]; mat0[h][w] -= coeff * mat0[i][w]; } } } for(auto &v : mat0) for (auto &x : v) x = -x; auto det_poly = characteristic_poly(mat0); for (int i = b; i <= N; i++) cout << (det_poly[i] * prod).val() << '\n'; for (int i = N + 1; i <= N + b; i++) cout << "0\n"; return 0; }