import java.util.Arrays; import java.util.Scanner; import java.util.stream.IntStream; public class Main { private int N = 1 << 11; private int M = 1 << 8; private int[] a = new int[N]; private int[] b = new int[N]; private int[] c = new int[N]; private int[] p = new int[N]; private int[] q = new int[N]; private int[] r = new int[N]; private int score; private int bestScore; private int[] solution = new int[M]; private int[] bestSolution = new int[M]; int[][] penalties = new int[M][2]; public static Watch watch = new Watch(); public static XorShift rng = new XorShift(System.nanoTime()); public static SAState sa = new SAState(); public static void main(String[] args) { new Main().run(); } private void run() { read(); solve(); write(); } private void read() { try (Scanner in = new Scanner(System.in)) { for (int i = 0; i < N; i++) { a[i] = in.nextInt(); b[i] = in.nextInt(); c[i] = in.nextInt(); p[i] = in.nextInt(); q[i] = in.nextInt(); r[i] = in.nextInt(); } } catch (Exception e) { e.printStackTrace(); } } private void solve() { score = calculateScore(solution); multiSA(); } private int calculateScore(int[] out2) { for (int i = 0; i < N; i++) { if (out2[a[i]] == p[i] || out2[b[i]] == q[i] || out2[c[i]] == r[i]) { } else { return i; } } return N; } private void multiSA() { int numRestart = 10; double startTime = watch.getSecond(); double endTime = 1.8; double remainTime = endTime - startTime; double startStartTemperature = 10; double endStartTemperature = 10; for (double restart = 0; restart < numRestart; restart++) { sa.startTime = startTime + remainTime * restart / numRestart; sa.endTime = startTime + remainTime * (restart + 1) / numRestart; sa.startTemperature = endStartTemperature + (startStartTemperature - endStartTemperature) * ((numRestart - restart) / numRestart); sa.endTemperature = 0; for (int i = 0; i < M; i++) { Arrays.fill(penalties[i], 0); } GLS(); } loadBest(); Utils.debug("MultiSA", score, watch.getSecond()); } private void GLS() { double second = 0.1 + watch.getSecond(); sa.init(); for (;; ++sa.numIterations) { if ((sa.numIterations & ((1 << 8) - 1)) == 0) { sa.update(); if (sa.time > second) { second += 0.1; Utils.debug(sa.numIterations, String.format("%.2f%%", 100.0 * sa.validIterations / sa.numIterations), String.format("%.2f%%", 100.0 * sa.acceptIterations / sa.validIterations), String.format("%d", score), String.format("%d", bestScore), String.format("%.6f", 1.0 / sa.inverseTemperature), String.format("%.6f", 1.0 / sa.lastAcceptTemperature)); } if (sa.isTLE()) { break; } } mutate(); } } private void mutate() { change(); } private void change() { int minIndex = -1; int min = (int) 1e9; for (int i = 0; i < M; i++) { if (penalties[i][solution[i]] < min) { min = penalties[i][solution[i]]; minIndex = i; } } penalties[minIndex][solution[minIndex]]++; int index = minIndex; int beforePenalty = penalties[index][solution[index]]; solution[index] = 1 - solution[index]; double deltaScore = calculateScore(solution) - score; int afterPenalty = penalties[index][solution[index]]; double deltaPenalty = 1e0 * (afterPenalty - beforePenalty); sa.validIterations++; if (deltaScore > deltaPenalty) { sa.acceptIterations++; score += deltaScore; saveBest(); } else { solution[index] = 1 - solution[index]; } } private void write() { StringBuilder sb = new StringBuilder(); IntStream.range(0, M).forEach(i -> sb.append(solution[i])); System.out.println(sb.reverse().toString()); System.out.flush(); } private void saveBest() { if (score > bestScore) { bestScore = score; System.arraycopy(solution, 0, bestSolution, 0, M); } } private void loadBest() { score = bestScore; System.arraycopy(bestSolution, 0, solution, 0, M); } } final class Utils { private Utils() { } public static final void debug(Object... o) { System.err.println(toString(o)); } public static final String toString(Object... o) { return Arrays.deepToString(o); } public static boolean isValid(int v, int min, int minUpper) { return v >= min && v < minUpper; } } class Watch { private long start; public Watch() { init(); } public double getSecond() { return (System.nanoTime() - start) * 1e-9; } public void init() { init(System.nanoTime()); } private void init(long start) { this.start = start; } public String getSecondString() { return toString(getSecond()); } public static final String toString(double second) { if (second < 60) { return String.format("%5.2fs", second); } else if (second < 60 * 60) { int minute = (int) (second / 60); return String.format("%2dm%2ds", minute, (int) (second % 60)); } else { int hour = (int) (second / (60 * 60)); int minute = (int) (second / 60); return String.format("%2dh%2dm%2ds", hour, minute % (60), (int) (second % 60)); } } } class XorShift { private int w = 88675123; private int x = 123456789; private int y = 362436069; private int z = 521288629; public XorShift(long l) { x = (int) l; } public int nextInt() { final int t = x ^ (x << 11); x = y; y = z; z = w; w = w ^ (w >>> 19) ^ (t ^ (t >>> 8)); return w; } public long nextLong() { return ((long) nextInt() << 32) ^ (long) nextInt(); } public double nextDouble() { return (nextInt() >>> 1) * 4.6566128730773926E-10; } public int nextInt(int n) { return (int) (n * nextDouble()); } } class SAState { public static final boolean useTime = true; public double startTime; public double endTime; public double time; public double startTemperature; public double endTemperature; public double inverseTemperature; public double lastAcceptTemperature; public double startRange; public double endRange; public double range; public int numIterations; public int validIterations; public int acceptIterations; private double[] log = new double[32768]; public SAState() { for (int i = 0; i < log.length; i++) { log[i] = Math.log((i + 0.5) / log.length); } } public void init() { numIterations = 0; validIterations = 0; acceptIterations = 0; startTime = useTime ? Main.watch.getSecond() : numIterations; update(); lastAcceptTemperature = inverseTemperature; } public void update() { updateTime(); updateTemperature(); } public boolean useExp = !true; public void updateTemperature() { if (useExp) { double time0to1 = elapsedPercentage(startTime, endTime, time); double startY = startTemperature; double endY = endTemperature; double startX = Math.log(startY); double endX = Math.log(endY); double xStartToEnd = interpolate(startX, endX, time0to1); double temperature = Math.exp(xStartToEnd); inverseTemperature = 1.0 / temperature; } else { double time0to1 = elapsedPercentage(startTime, endTime, time); double startY = startTemperature; double endY = endTemperature; double temperature = interpolate(startY, endY, time0to1); inverseTemperature = 1.0 / temperature; } } private double elapsedPercentage(double min, double max, double v) { return (v - min) / (max - min); } private double interpolate(double v0, double v1, double d0to1) { return v0 + (v1 - v0) * d0to1; } public void updateRange() { range = endRange + (startRange - endRange) * Math.pow((endTime - time) / (endTime - startTime), 1.0); } public void updateTime() { time = useTime ? Main.watch.getSecond() : numIterations; } public boolean isTLE() { return time >= endTime; } public boolean accept(double deltaScore) { return acceptB(deltaScore); } public boolean acceptB(double deltaScore) { validIterations++; if (deltaScore > -1e-9) { acceptIterations++; return true; } double d = deltaScore * inverseTemperature; if (d < -10) { return false; } if (log[Main.rng.nextInt() & 32767] < d) { acceptIterations++; lastAcceptTemperature = inverseTemperature; return true; } return false; } public boolean acceptS(double deltaScore) { validIterations++; if (deltaScore < 1e-9) { acceptIterations++; return true; } double d = -deltaScore * inverseTemperature; if (d < -10) { return false; } if (log[Main.rng.nextInt() & 32767] < d) { acceptIterations++; lastAcceptTemperature = inverseTemperature; return true; } return false; } }