#include <algorithm> #include <bitset> #include <cassert> #include <iomanip> #include <iostream> #include <map> #include <queue> #include <random> #include <set> #include <stack> #include <vector> #define FOR(i, n, m) for (ll i = n; i < (int)m; i++) #define REP(i, n) FOR(i, 0, n) #define ALL(v) v.begin(), v.end() #define pb push_back using namespace std; using ll = long long; using P = pair<int, int>; constexpr ll inf = 1000000000; constexpr ll mod = 1000000007; constexpr long double eps = 1e-9; template <typename T1, typename T2> ostream& operator<<(ostream& os, pair<T1, T2> p) { os << to_string(p.first) << " " << to_string(p.second); return os; } template <typename T> ostream& operator<<(ostream& os, vector<T>& v) { REP(i, v.size()) { if (i) os << " "; os << to_string(v[i]); } return os; } struct modint { ll n; public: modint(const ll n = 0) : n((n % mod + mod) % mod) {} static modint pow(modint a, int m) { modint r = 1; while (m > 0) { if (m & 1) { r *= a; } a = (a * a); m /= 2; } return r; } modint& operator++() { *this += 1; return *this; } modint& operator--() { *this -= 1; return *this; } modint operator++(int) { modint ret = *this; *this += 1; return ret; } modint operator--(int) { modint ret = *this; *this -= 1; return ret; } modint operator~() const { return (this->pow(n, mod - 2)); } // inverse friend bool operator==(const modint& lhs, const modint& rhs) { return lhs.n == rhs.n; } friend bool operator<(const modint& lhs, const modint& rhs) { return lhs.n < rhs.n; } friend bool operator>(const modint& lhs, const modint& rhs) { return lhs.n > rhs.n; } friend modint& operator+=(modint& lhs, const modint& rhs) { lhs.n += rhs.n; if (lhs.n >= mod) lhs.n -= mod; return lhs; } friend modint& operator-=(modint& lhs, const modint& rhs) { lhs.n -= rhs.n; if (lhs.n < 0) lhs.n += mod; return lhs; } friend modint& operator*=(modint& lhs, const modint& rhs) { lhs.n = (lhs.n * rhs.n) % mod; return lhs; } friend modint& operator/=(modint& lhs, const modint& rhs) { lhs.n = (lhs.n * (~rhs).n) % mod; return lhs; } friend modint operator+(const modint& lhs, const modint& rhs) { return modint(lhs.n + rhs.n); } friend modint operator-(const modint& lhs, const modint& rhs) { return modint(lhs.n - rhs.n); } friend modint operator*(const modint& lhs, const modint& rhs) { return modint(lhs.n * rhs.n); } friend modint operator/(const modint& lhs, const modint& rhs) { return modint(lhs.n * (~rhs).n); } }; istream& operator>>(istream& is, modint m) { is >> m.n; return is; } ostream& operator<<(ostream& os, modint m) { os << m.n; return os; } #define MAX_N 3030303 long long extgcd(long long a, long long b, long long& x, long long& y) { long long d = a; if (b != 0) { d = extgcd(b, a % b, y, x); y -= (a / b) * x; } else { x = 1; y = 0; } return d; } long long mod_inverse(long long a, long long m) { long long x, y; if (extgcd(a, m, x, y) == 1) return (m + x % m) % m; else return -1; } vector<long long> fact(MAX_N + 1, inf); long long mod_fact(long long n, long long& e) { if (fact[0] == inf) { fact[0] = 1; if (MAX_N != 0) fact[1] = 1; for (ll i = 2; i <= MAX_N; ++i) { fact[i] = (fact[i - 1] * i) % mod; } } e = 0; if (n == 0) return 1; long long res = mod_fact(n / mod, e); e += n / mod; if ((n / mod) % 2 != 0) return (res * (mod - fact[n % mod])) % mod; return (res * fact[n % mod]) % mod; } // return nCk long long mod_comb(long long n, long long k) { if (n < 0 || k < 0 || n < k) return 0; long long e1, e2, e3; long long a1 = mod_fact(n, e1), a2 = mod_fact(k, e2), a3 = mod_fact(n - k, e3); if (e1 > e2 + e3) return 0; return (a1 * mod_inverse((a2 * a3) % mod, mod)) % mod; } using mi = modint; mi mod_pow(mi a, ll n) { mi ret = 1; mi tmp = a; while (n > 0) { if (n % 2) ret *= tmp; tmp = tmp * tmp; n /= 2; } return ret; } ll gcd(ll a, ll b) { if (b == 0) return a; return gcd(b, a % b); } int h, w; string s[500]; map<P, mi> memo[500][500]; mi solve(P p1, P p2) { // invalid if (p1.first >= h || p1.second >= w || p2.first >= h || p2.second >= w) return 0; if (s[p1.first][p1.second] != s[p2.first][p2.second]) return 0; if (p1.first + p1.second > p2.first + p2.second) return 0; // memoized if (memo[p1.first][p1.second].count(p2)) return memo[p1.first][p1.second][p2]; if (p1.first + p1.second == p2.first + p2.second) { if (p1 == p2) return 1; else return 0; } if (p1.first + p1.second + 1 == p2.first + p2.second) { if (abs(p1.first - p2.first) + abs(p1.second - p2.second) == 1) { return 1; } else return 0; } memo[p1.first][p1.second][p2] = solve({p1.first + 1, p1.second}, {p2.first - 1, p2.second}) + solve({p1.first + 1, p1.second}, {p2.first, p2.second - 1}) + solve({p1.first, p1.second + 1}, {p2.first - 1, p2.second}) + solve({p1.first, p1.second + 1}, {p2.first, p2.second - 1}); return memo[p1.first][p1.second][p2]; } int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> h >> w; REP(i, h) cin >> s[i]; cout << solve({0, 0}, {h - 1, w - 1}) << endl; return 0; }