#line 1 "main.cpp" #define PROBLEM "https://yukicoder.me/problems/no/502" #line 1 "/home/maspy/compro/library/my_template.hpp" #include using namespace std; using ll = long long; using pi = pair; using vi = vector; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; template using vc = vector; template using vvc = vector>; template using vvvc = vector>; template using vvvvc = vector>; template using vvvvvc = vector>; template using pq = priority_queue; template using pqg = priority_queue, greater>; #define vec(type, name, ...) vector name(__VA_ARGS__) #define vv(type, name, h, ...) \ vector> name(h, vector(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector>> name( \ h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name( \ a, vector>>( \ b, vector>(c, vector(__VA_ARGS__)))) #define FOR_(n) for (ll _ = 0; (_) < (ll)(n); ++(_)) #define FOR(i, n) for (ll i = 0; (i) < (ll)(n); ++(i)) #define FOR3(i, m, n) for (ll i = (m); (i) < (ll)(n); ++(i)) #define FOR_R(i, n) for (ll i = (ll)(n)-1; (i) >= 0; --(i)) #define FOR3_R(i, m, n) for (ll i = (ll)(n)-1; (i) >= (ll)(m); --(i)) #define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s)) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll template T SUM(vector &A) { T sum = T(0); for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template pair divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } ll binary_search(function check, ll ok, ll ng) { assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; if (check(x)) ok = x; else ng = x; } return ok; } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } vi s_to_vi(const string& S, char first_char) { vi A(S.size()); FOR(i, S.size()) { A[i] = S[i] - first_char; } return A; } template vector cumsum(vector &A, int off = 1) { int N = A.size(); vector B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } template vc bincount(const vc &A, int size) { vc C(size); for (auto &&x: A) { ++C[x]; } return C; } template vector argsort(const vector &A) { // stable vector ids(A.size()); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); }); return ids; } // A[I[0]], A[I[1]], ... template vc rearrange(const vc &A, const vc &I) { int n = len(A); assert(len(I) == n); vc B(n); FOR(i, n) B[i] = A[I[i]]; return B; } #line 1 "/home/maspy/compro/library/other/io.hpp" // based on yosupo's fastio #include namespace detail { template std::true_type check_value(int); template std::false_type check_value(long); } // namespace detail template struct is_modint : decltype(detail::check_value(0)) {}; template using is_modint_t = enable_if_t::value>; template using is_not_modint_t = enable_if_t::value>; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template * = nullptr> bool read_single(T &ref) { long long val = 0; bool f = read_single(val); ref = T(val); return f; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template bool read_single(vector &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template bool read_single(pair &p) { return (read_single(p.first) && read_single(p.second)); } template bool read_single(tuple &p) { return (read_single(get<0>(p)) && read_single(get<1>(p)) && read_single(get<2>(p))); } template bool read_single(tuple &p) { return (read_single(get<0>(p)) && read_single(get<1>(p)) && read_single(get<2>(p)) && read_single(get<3>(p))); } void read() {} template void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char &val) { if (pos == SIZE) flush(); line[pos++] = val; } template ::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string &s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double &x) { ostringstream oss; oss << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double &x) { ostringstream oss; oss << setprecision(15) << x; string s = oss.str(); write(s); } template * = nullptr> void write(T &ref) { write(ref.val); } template void write(const vector &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template void write(const pair &val) { write(val.first); write(' '); write(val.second); } template void write(const tuple &val) { auto &[a, b, c] = val; write(a), write(' '), write(b), write(' '), write(c); } template void write(const tuple &val) { auto &[a, b, c, d] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d); } template void write(const tuple &val) { auto &[a, b, c, d, e] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e); } template void write(const tuple &val) { auto &[a, b, c, d, e, f] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e), write(' '), write(f); } template void write(const array &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if(val < 0){ negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if(negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward(tail)...); } void read() {} template void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ read(name) #define VV(type, name, h, w) \ vector> name(h, vector(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "/home/maspy/compro/library/linalg/mat_mul.hpp" template * = nullptr> vc> mat_mul(const vc>& A, const vc>& B) { // mod をとる回数を減らしてみる auto N = len(A), M = len(B), K = len(B[0]); vv(T, C, N, K); const u64 MOD2 = 8ull * T::get_mod() * T::get_mod(); FOR(n, N) { vc tmp(K); FOR(m, M) FOR(k, K) { tmp[k] += u64(A[n][m].val) * B[m][k].val; if (tmp[k] >= MOD2) tmp[k] -= MOD2; } FOR(k, K) C[n][k] = tmp[k]; } return C; } template * = nullptr> vc> mat_mul(const vc>& A, const vc>& B) { auto N = len(A), M = len(B), K = len(B[0]); vv(T, C, N, K); FOR(n, N) FOR(m, M) FOR(k, K) C[n][k] += A[n][m] * B[m][k]; return C; } #line 1 "/home/maspy/compro/library/alg/group_mul.hpp" template struct Group_Mul { using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x * y; } static constexpr X inverse(const X &x) noexcept { return X(1) / x; } static constexpr X unit() { return X(1); } static constexpr bool commute = true; }; #line 1 "/home/maspy/compro/library/ds/swag.hpp" template struct SWAG { using X = typename Monoid::value_type; using value_type = X; int sz = 0; vc dat; vc cum_l; X cum_r; SWAG() : cum_l({Monoid::unit()}), cum_r(Monoid::unit()) {} int size() { return sz; } void push(X x) { ++sz; cum_r = Monoid::op(cum_r, x); dat.eb(x); } void pop() { --sz; cum_l.pop_back(); if (len(cum_l) == 0) { cum_l = {Monoid::unit()}; cum_r = Monoid::unit(); while (len(dat) > 1) { cum_l.eb(Monoid::op(dat.back(), cum_l.back())); dat.pop_back(); } dat.pop_back(); } } X prod() { return Monoid::op(cum_l.back(), cum_r); } void debug() { print("swag"); print("dat", dat); print("cum_l", cum_l); print("cum_r", cum_r); } }; #line 2 "/home/maspy/compro/library/mod/modint.hpp" template struct modint { static constexpr bool is_modint = true; u32 val; constexpr modint(const ll val = 0) noexcept : val(val >= 0 ? val % mod : (mod - (-val) % mod) % mod) {} bool operator<(const modint &other) const { return val < other.val; } // To use std::map modint &operator+=(const modint &p) { if ((val += p.val) >= mod) val -= mod; return *this; } modint &operator-=(const modint &p) { if ((val += mod - p.val) >= mod) val -= mod; return *this; } modint &operator*=(const modint &p) { val = (u32)(1LL * val * p.val % mod); return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint(get_mod() - val); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(int64_t n) const { modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr u32 get_mod() { return mod; } }; struct ArbitraryModInt { static constexpr bool is_modint = true; u32 val; ArbitraryModInt() : val(0) {} ArbitraryModInt(int64_t y) : val(y >= 0 ? y % get_mod() : (get_mod() - (-y) % get_mod()) % get_mod()) {} bool operator<(const ArbitraryModInt &other) const { return val < other.val; } // To use std::map static u32 &get_mod() { static u32 mod = 0; return mod; } static void set_mod(int md) { get_mod() = md; } ArbitraryModInt &operator+=(const ArbitraryModInt &p) { if ((val += p.val) >= get_mod()) val -= get_mod(); return *this; } ArbitraryModInt &operator-=(const ArbitraryModInt &p) { if ((val += get_mod() - p.val) >= get_mod()) val -= get_mod(); return *this; } ArbitraryModInt &operator*=(const ArbitraryModInt &p) { unsigned long long a = (unsigned long long)val * p.val; unsigned xh = (unsigned)(a >> 32), xl = (unsigned)a, d, m; asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(get_mod())); val = m; return *this; } ArbitraryModInt &operator/=(const ArbitraryModInt &p) { *this *= p.inverse(); return *this; } ArbitraryModInt operator-() const { return ArbitraryModInt(get_mod() - val); } ArbitraryModInt operator+(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) += p; } ArbitraryModInt operator-(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) -= p; } ArbitraryModInt operator*(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) *= p; } ArbitraryModInt operator/(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) /= p; } bool operator==(const ArbitraryModInt &p) const { return val == p.val; } bool operator!=(const ArbitraryModInt &p) const { return val != p.val; } ArbitraryModInt inverse() const { int a = val, b = get_mod(), u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return ArbitraryModInt(u); } ArbitraryModInt pow(int64_t n) const { ArbitraryModInt ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } }; template tuple get_factorial_data(int n) { static constexpr int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector fact = {1, 1}; static vector fact_inv = {1, 1}; static vector inv = {0, 1}; while (len(fact) <= n) { int k = len(fact); fact.eb(fact[k - 1] * mint(k)); auto q = ceil(mod, k); int r = k * q - mod; inv.eb(inv[r] * mint(q)); fact_inv.eb(fact_inv[k - 1] * inv[k]); } return {fact[n], fact_inv[n], inv[n]}; } template mint fact(int n) { static constexpr int mod = mint::get_mod(); assert(0 <= n); if (n >= mod) return 0; return get<0>(get_factorial_data(n)); } template mint fact_inv(int n) { static constexpr int mod = mint::get_mod(); assert(0 <= n && n < mod); return get<1>(get_factorial_data(n)); } template mint inv(int n) { static constexpr int mod = mint::get_mod(); assert(0 <= n && n < mod); return get<2>(get_factorial_data(n)); } template mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if (!large) return fact(n) * fact_inv(k) * fact_inv(n - k); k = min(k, n - k); mint x(1); FOR(i, k) { x *= mint(n - i); } x *= fact_inv(k); return x; } template mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv(n) * fact(k) * fact(n - k); return mint(1) / C(n, k); } using modint107 = modint<1000000007>; using modint998 = modint<998244353>; using amint = ArbitraryModInt; #line 3 "/home/maspy/compro/library/poly/convolution.hpp" template vector convolution_naive(const vector& a, const vector& b) { int n = int(a.size()), m = int(b.size()); vector ans(n + m - 1); if (n < m) { FOR(j, m) FOR(i, n) ans[i + j] += a[i] * b[j]; } else { FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j]; } return ans; } template struct fft_info { static constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } static constexpr int rank2 = bsf_constexpr(mint::get_mod() - 1); array root; array iroot; array rate2; array irate2; array rate3; array irate3; fft_info() { int g = primitive_root(mint::get_mod()); root[rank2] = mint(g).pow((mint::get_mod() - 1) >> rank2); iroot[rank2] = mint(1) / root[rank2]; FOR_R(i, rank2) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } constexpr int primitive_root(int m) { if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 880803841) return 26; if (m == 998244353) return 3; return -1; } }; template void ntt(vector& a, bool inverse) { int n = int(a.size()); int h = topbit(n); assert(n == 1 << h); static const fft_info info; if (!inverse) { int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; FOR(s, 1 << len) { int offset = s << (h - len); FOR(i, p) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } rot *= info.rate2[topbit(~s & -~s)]; } len++; } else { int p = 1 << (h - len - 2); mint rot = 1, imag = info.root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * mint::get_mod() * mint::get_mod(); auto a0 = 1ULL * a[i + offset].val; auto a1 = 1ULL * a[i + offset + p].val * rot.val; auto a2 = 1ULL * a[i + offset + 2 * p].val * rot2.val; auto a3 = 1ULL * a[i + offset + 3 * p].val * rot3.val; auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val * imag.val; auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } rot *= info.rate3[topbit(~s & -~s)]; } len += 2; } } } else { mint coef = mint(1) / mint(len(a)); FOR(i, len(a)) a[i] *= coef; int len = h; while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; FOR(s, 1 << (len - 1)) { int offset = s << (h - len + 1); FOR(i, p) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(mint::get_mod() + l.val - r.val) * irot.val; ; } irot *= info.irate2[topbit(~s & -~s)]; } len--; } else { int p = 1 << (h - len); mint irot = 1, iimag = info.iroot[2]; FOR(s, (1 << (len - 2))) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].val; auto a1 = 1ULL * a[i + offset + 1 * p].val; auto a2 = 1ULL * a[i + offset + 2 * p].val; auto a3 = 1ULL * a[i + offset + 3 * p].val; auto a2na3iimag = 1ULL * mint((mint::get_mod() + a2 - a3) * iimag.val).val; a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (mint::get_mod() - a1) + a2na3iimag) * irot.val; a[i + offset + 2 * p] = (a0 + a1 + (mint::get_mod() - a2) + (mint::get_mod() - a3)) * irot2.val; a[i + offset + 3 * p] = (a0 + (mint::get_mod() - a1) + (mint::get_mod() - a2na3iimag)) * irot3.val; } irot *= info.irate3[topbit(~s & -~s)]; } len -= 2; } } } } template vector convolution_ntt(vector a, vector b) { int n = int(a.size()), m = int(b.size()); int sz = 1; while (sz < n + m - 1) sz *= 2; // sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。 if((n+m-3) <= sz / 2){ auto a_last = a.back(), b_last = b.back(); a.pop_back(), b.pop_back(); auto c = convolution(a, b); c.eb(0); c.eb(0); c.back() = a_last * b_last; FOR(i, len(a)) c[i + len(b)] += a[i] * b_last; FOR(i, len(b)) c[i + len(a)] += b[i] * a_last; return c; } a.resize(sz), b.resize(sz); bool same = a == b; ntt(a, 0); if(same){ b = a; } else { ntt(b, 0); } FOR(i, sz) a[i] *= b[i]; ntt(a, 1); a.resize(n + m - 1); return a; } template vector convolution_garner(const vector& a, const vector& b) { int n = len(a), m = len(b); if (!n || !m) return {}; static const long long nttprimes[] = {754974721, 167772161, 469762049}; using mint0 = modint<754974721>; using mint1 = modint<167772161>; using mint2 = modint<469762049>; vc a0(n), b0(m); vc a1(n), b1(m); vc a2(n), b2(m); FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val; FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val; auto c0 = convolution_ntt(a0, b0); auto c1 = convolution_ntt(a1, b1); auto c2 = convolution_ntt(a2, b2); static const long long m01 = 1LL * nttprimes[0] * nttprimes[1]; static const long long m0_inv_m1 = mint1(nttprimes[0]).inverse().val; static const long long m01_inv_m2 = mint2(m01).inverse().val; static const int mod = mint::get_mod(); auto garner = [&](mint0 x0, mint1 x1, mint2 x2) -> mint { int r0 = x0.val, r1 = x1.val, r2 = x2.val; int v1 = (m0_inv_m1 * (r1 + nttprimes[1] - r0)) % nttprimes[1]; auto v2 = (mint2(r2) - r0 - mint2(nttprimes[0]) * v1) * mint2(m01_inv_m2); return mint(r0 + 1LL * nttprimes[0] * v1 + m01 % mod * v2.val); }; vc c(len(c0)); FOR(i, len(c)) c[i] = garner(c0[i], c1[i], c2[i]); return c; } namespace CFFT { using real = double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C& c) const { return C(x + c.x, y + c.y); } inline C operator-(const C& c) const { return C(x - c.x, y - c.y); } inline C operator*(const C& c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector rts = {{0, 0}, {1, 0}}; vector rev = {0, 1}; void ensure_base(int nbase) { if (nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for (int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while (base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for (int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector& a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for (int i = 0; i < n; i++) { if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for (int k = 1; k < n; k <<= 1) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } template vc convolution_fft(const vc& a, const vc& b) { int need = (int)a.size() + (int)b.size() - 1; int nbase = 1; while ((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; vector fa(sz); for (int i = 0; i < sz; i++) { int x = (i < (int)a.size() ? a[i] : 0); int y = (i < (int)b.size() ? b[i] : 0); fa[i] = C(x, y); } fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for (int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for (int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } fft(fa, sz >> 1); vector ret(need); for (int i = 0; i < need; i++) { ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } } // namespace CFFT vector convolution(const vector& a, const vector& b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (min(n, m) <= 60) return convolution_naive(a, b); ll abs_sum_a = 0, abs_sum_b = 0; FOR(i, n) abs_sum_a += abs(a[i]); FOR(i, m) abs_sum_b += abs(b[i]); assert(abs_sum_a * abs_sum_b < 1e15); vc c = CFFT::convolution_fft(a, b); vc res(len(c)); FOR(i, len(c)) res[i] = ll(floor(c[i] + .5)); return res; } template enable_if_t::value, vc> convolution(const vc& a, const vc& b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (min(n, m) <= 60) return convolution_naive(a, b); return convolution_ntt(a, b); } template enable_if_t::value, vc> convolution(const vc& a, const vc& b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (min(n, m) <= 60) return convolution_naive(a, b); return convolution_garner(a, b); } #line 5 "/home/maspy/compro/library/poly/lagrange_interpolate_iota.hpp" template vc lagrange_interpolate_iota(vc &f, mint c, int m) { /* Input: f(0), ..., f(n-1) and c, m (1 default) Return: f(c), f(c+1), ..., f(c+m-1) Complexity: M(n, n + m) → m がとても小さいならば O(n) を m 回やる方が速いのか */ if(m <= 60){ vc ANS(m); FOR(i, m) ANS[i] = lagrange_interpolate_iota(f, c + mint(i)); return ANS; } ll n = len(f); auto a = f; FOR(i, n) { a[i] = a[i] * fact_inv(i) * fact_inv(n - 1 - i); if ((n - 1 - i) & 1) a[i] = -a[i]; } // x = c, c+1, ... に対して a0/x + a1/(x-1) + ... を求めておく vc b(n + m - 1); FOR(i, n + m - 1) b[i] = mint(1) / (c + mint(i - n + 1)); a = convolution(a, b); SWAG> swag; vc ANS(m); ll L = 0, R = 0; FOR(i, m) { while (L < i) { swag.pop(), ++L; } while (R - L < n) { swag.push(c + mint((R++) - n + 1)); } auto coef = swag.prod(); if (coef == 0) { ANS[i] = f[(c + i).val]; } else { ANS[i] = a[i + n - 1] * coef; } } return ANS; } template mint lagrange_interpolate_iota(vc &f, mint c) { /* Input: f(0), ..., f(n-1) and c Return: f(c) Complexity: O(n) */ int n = len(f); if(c.val < n) return f[c.val]; auto a = f; FOR(i, n) { a[i] = a[i] * fact_inv(i) * fact_inv(n - 1 - i); if ((n - 1 - i) & 1) a[i] = -a[i]; } vc lp(n+1), rp(n+1); lp[0] = rp[n] = 1; FOR(i, n) lp[i+1] = lp[i] * (c - i); FOR_R(i, n) rp[i] = rp[i+1] * (c - i); mint ANS = 0; FOR(i, n) ANS += a[i] * lp[i] * rp[i + 1]; return ANS; } #line 4 "/home/maspy/compro/library/poly/prefix_product_of_poly.hpp" // A[k-1]...A[0] // アルゴリズム参考:https://github.com/noshi91/n91lib_rs/blob/master/src/algorithm/polynomial_matrix_prod.rs // 実装参考:https://nyaannyaan.github.io/library/matrix/polynomial-matrix-prefix-prod.hpp template vc> prefix_product_of_poly_matrix(vc>>& A, ll k) { int n = len(A); using MAT = vc>; auto shift = [&](vc& G, T x) -> vc { int d = len(G); vvv(T, H, d, n, n); FOR(i, n) FOR(j, n) { vc g(d); FOR(l, d) g[l] = G[l][i][j]; auto h = lagrange_interpolate_iota(g, x, d); FOR(l, d) H[l][i][j] = h[l]; } return H; }; auto evaluate = [&](vc& f, T x) -> T { T res = 0; T p = 1; FOR(i, len(f)) { res += f[i] * p; p *= x; } return res; }; ll deg = 1; FOR(i, n) FOR(j, n) chmax(deg, len(A[i][j]) - 1); vc G(deg + 1); ll v = 1; while (deg * v * v < k) v *= 2; T iv = T(1) / T(v); FOR(i, len(G)) { T x = T(v) * T(i); vv(T, mat, n, n); FOR(j, n) FOR(k, n) mat[j][k] = evaluate(A[j][k], x); G[i] = mat; } for (ll w = 1; w != v; w *= 2) { T W = w; auto G1 = shift(G, W * iv); auto G2 = shift(G, (W * T(deg) * T(v) + T(v)) * iv); auto G3 = shift(G, (W * T(deg) * T(v) + T(v) + W) * iv); FOR(i, w * deg + 1) { G[i] = mat_mul(G1[i], G[i]); G2[i] = mat_mul(G3[i], G2[i]); } copy(G2.begin(), G2.end() - 1, back_inserter(G)); } vv(T, res, n, n); FOR(i, n) res[i][i] = 1; ll i = 0; while (i + v <= k) res = mat_mul(G[i / v], res), i += v; while (i < k) { vv(T, mat, n, n); FOR(j, n) FOR(k, n) mat[j][k] = evaluate(A[j][k], i); res = mat_mul(mat, res); ++i; } return res; } // A[k-1]...A[0] template T prefix_product_of_poly(vc& f, ll k) { vc>> A(1); A[0].resize(1); A[0][0] = f; auto res = prefix_product_of_poly_matrix(A, k); return res[0][0]; } #line 2 "/home/maspy/compro/library/seq/kth_term_of_p_recursive.hpp" // a0, ..., a_{r-1} および f_0, ..., f_r を与える // a_r f_0(0) + a_{r-1}f_1(0) + ... = 0 // a_{r+1} f_0(1) + a_{r}f_1(1) + ... = 0 template T kth_term_of_p_recursive(vc a, vc>& fs, ll k) { int r = len(a); assert(len(fs) == r + 1); if (k < r) return a[k]; vc>> A; A.resize(r); FOR(i, r) A[i].resize(r); FOR(i, r) { // A[0][i] = -fs[i + 1]; for (auto&& x: fs[i + 1]) A[0][i].eb(-x); } FOR3(i, 1, r) A[i][i - 1] = fs[0]; vc den = fs[0]; auto res = prefix_product_of_poly_matrix(A, k - r + 1); reverse(all(a)); T ANS = 0; FOR(j, r) ANS += res[0][j] * a[j]; ANS /= prefix_product_of_poly(den, k - r + 1); return ANS; } #line 6 "main.cpp" using mint = modint107; void solve() { LL(N); if (N >= mint::get_mod()) return print(0); vc a = {1}; vc> fs(2); fs[0] = {1}; fs[1] = {-1, -1}; print(kth_term_of_p_recursive(a, fs, N)); } signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << setprecision(15); ll T = 1; // LL(T); FOR(_, T) solve(); return 0; }