from collections import defaultdict from math import gcd import sys readline=sys.stdin.readline class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factors=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factors[p]+=1 if N
0 divisors=[1] for p,e in self.Factorize(N).items(): A=[1] for _ in range(e): A.append(A[-1]*p) divisors=[i*j for i in divisors for j in A] return divisors def Is_Prime(self,N): return N==self.smallest_prime_factor[N] def Totient(self,N): for p in self.Factorize(N).keys(): N*=p-1 N//=p return N def Mebius(self,N): fact=self.Factorize(N) for e in fact.values(): if e>=2: return 0 else: if len(fact)%2==0: return 1 else: return -1 N=int(readline()) P=Prime(N) dp=defaultdict(int) dp[1]=0 dct=defaultdict(list) for n in range(2,N+1): a,b=1,1 for p,e in P.Factorize(n).items(): if p**2<=N: a*=p else: b=p if b!=1: dct[b].append((a,n)) else: prev=dp dp=defaultdict(int) for tpl,x in prev.items(): g=tpl dp[g]=max(dp[g],x) if gcd(g,a)==1: dp[g*a]=max(dp[g*a],prev[g]+n) for b,lst in dct.items(): prev=dp dp=defaultdict(int) for tpl,x in prev.items(): g=tpl dp[g]=max(dp[g],x) for a,n in lst: if gcd(g,a)==1: dp[g*a]=max(dp[g*a],prev[g]+n) ans=max(dp.values()) print(ans)