import math class SegTree: DEFAULT = { 'min': 1 << 60, 'max': -(1 << 60), 'sum': 0, 'prd': 1, 'gcd': 0, 'lmc': 1, '^': 0, '&': (1 << 60) - 1, '|': 0, } FUNC = { 'min': min, 'max': max, 'sum': (lambda x, y: x + y), 'prd': (lambda x, y: x * y), 'gcd': math.gcd, 'lmc': (lambda x, y: (x * y) // math.gcd(x, y)), '^': (lambda x, y: x ^ y), '&': (lambda x, y: x & y), '|': (lambda x, y: x | y), } def __init__(self, ls, mode='min', func=None, default=None): """ 要素ls, 関数mode (min,max,sum,prd(product),gcd,lmc,^,&,|) func,defaultを指定すれば任意の関数、単位元での計算が可能 """ N = len(ls) if default == None: self.default = self.DEFAULT[mode] else: self.default = default if func == None: self.func = self.FUNC[mode] else: self.func = func self.N = N self.K = (N - 1).bit_length() self.N2 = 1 << self.K self.dat = [self.default] * (2**(self.K + 1)) for i in range(self.N): # 葉の構築 self.dat[self.N2 + i] = ls[i] self.build() def build(self): for j in range(self.N2 - 1, -1, -1): self.dat[j] = self.func(self.dat[j << 1], self.dat[j << 1 | 1]) # 親が持つ条件 def leafvalue(self, x): # リストのx番目の値 return self.dat[x + self.N2] def update(self, x, y): # index(x)をyに変更 i = x + self.N2 self.dat[i] = y while i > 0: # 親の値を変更 i >>= 1 self.dat[i] = self.func(self.dat[i << 1], self.dat[i << 1 | 1]) return def query(self, L, R): # [L,R)の区間取得 L += self.N2 R += self.N2 vL = self.default vR = self.default while L < R: if L & 1: vL = self.func(vL, self.dat[L]) L += 1 if R & 1: R -= 1 vR = self.func(self.dat[R], vR) L >>= 1 R >>= 1 return self.func(vL, vR) def __iter__(self): for i in range(self.N): yield self[i] def __getitem__(self, x): return self.leafvalue(x) def __setitem__(self, x, val): return self.update(x, val) class LazySegTree(): #区間和のセグメント木、要素ls def __init__(self,ls): self.default = 0 self.func = (lambda x, y: x + y) self.N = len(ls) self.K = (self.N-1).bit_length() self.N0 = 1 << self.K self.dat = [self.default]*(2**(self.K+1)) self.lazy = [0]*(2**(self.K+1)) #遅延評価 for i in range(self.N): #葉の構築 self.dat[2**self.K+i] = ls[i] self.build() def build(self): for j in range(self.N0-1,0,-1): self.dat[j] = self.func(self.dat[j<<1],self.dat[j<<1|1]) #親が持つ条件 def leafvalue(self,x): #x番目の値を出力 return self.query(x,x+1) def update_add(self,x,y): #x番目にyを足す return self.updatel_add(x,x+1,y) def gindex(self,l, r): #伝播するインデックス列挙 L = l + self.N0; R = r + self.N0 lm = (L // (L & -L)) >> 1 rm = (R // (R & -R)) >> 1 lsindex = [] while L < R: if R <= rm: lsindex.append(R) if L <= lm: lsindex.append(L) L >>= 1; R >>= 1 while L: lsindex.append(L) L >>= 1 return lsindex def propagates(self,ids): for i in reversed(ids): v = self.lazy[i] if not v: continue self.lazy[i<<1] += v//2; self.lazy[i<<1|1] += v//2 self.dat[i<<1] += v//2; self.dat[i<<1|1] += v//2 self.lazy[i] = 0 def updatel_add(self,l, r, x):#区間にyを足す self.propagates(self.gindex(l, r)) L = self.N0 + l R = self.N0 + r ii = 0 while L < R: if L & 1: self.lazy[L] += x*(2**ii) self.dat[L] += x*(2**ii) L += 1 if R & 1: R -= 1 self.lazy[R] += x*(2**ii) self.dat[R] += x*(2**ii) L >>= 1 R >>= 1 ii += 1 for i in self.gindex(l, r): self.dat[i] = self.func(self.dat[i<<1],self.dat[i<<1|1])+self.lazy[i] def query(self,l, r): self.propagates(self.gindex(l, r)) L = self.N0 + l R = self.N0 + r vL = self.default vR = self.default while L < R: if L & 1: vL = self.func(vL,self.dat[L]) L += 1 if R & 1: R -= 1 vR = self.func(self.dat[R],vR) L >>= 1 R >>= 1 return self.func(vL,vR) N,Q = map(int,input().split()) lsa = list(map(int,input().split())) lsp = [0]*(N-1) for i in range(N-1): if lsa[i] != lsa[i+1]: lsp[i] = 1 SG = SegTree(lsp,mode='sum') LSG = LazySegTree(lsp) ans = [] for i in range(Q): ls =list(map(int,input().split())) if ls[0] == 1: _,l,r,x = ls l -= 1 LSG.updatel_add(l, r, x) if l != 0: if LSG.leafvalue(l-1) == LSG.leafvalue(l): SG[l-1] = 0 else: SG[l-1] = 1 if r != N: if LSG.leafvalue(r-1) == LSG.leafvalue(r): SG[r-1] = 0 else: SG[r-1] = 1 else: _,l,r = ls l -= 1 r -= 1 ans.append(SG.query(l, r)+1) print(*ans,sep='\n')