#include using namespace std; using ll = long long; const int INF = (int)1e9 + 1001010; const ll llINF = (ll)4e18 + 11000010; #define ALL(x) x.begin(),x.end() #define RALL(x) x.rbegin(),x.rend() ll ceil(ll a, ll b){return (a+b-1) / b;}; // ================================== ここまでテンプレ ================================== // とある条件を満たす区間の境界を見つける // 探索区間は [ok, ng) または (ng, ok] // ok はつねに「とある条件」を満たす // ng はつねに「とある条件」を満たさない // 「とある条件」を満たすかどうかは、judge関数によって求められる template T Binary_Search(T ok, T ng, Judgement judge, T tolerance = 1){ assert(!is_integral_v || tolerance == 1); while(((ok < ng) ? (ng - ok) : (ok - ng)) > tolerance){ // while(abs(ok - ng) > 1) { T mid; if(is_integral_v){ if(ok > 0 ^ ng > 0) mid = ok + (ng - ok)/2; else mid = (ok + ng)/2; } else mid = (ok + ng) * 0.5; if(judge(mid)) ok = mid; else ng = mid; } return ok; }; int main(){ int n; cin >> n; vector l(n); for(int i = 0; i < n; i++) cin >> l[i]; ll k; cin >> k; auto judge = [&](double mid) -> bool{ if(mid <= 0) return true; int count = 0; for(int i = 0; i < n; i++){ count += floor(l[i] / mid); } return (count >= k); }; double ans = Binary_Search(-1.0, 1e12, judge, 1e-10); printf("%.12lf\n", ans); return 0; }