// #include // #include // #include #include // #include // #include // #include using namespace atcoder; #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include using namespace std; constexpr long long INF_LL = 2000000000000000000LL; constexpr int INF = 2000000000; constexpr long long MOD = 998244353; // constexpr long long MOD = 1000000007; const double PI = acos(-1); #define all(x) x.begin(), x.end() #define REP(i, a, b) for(int i = a; i < b; i++) #define rep(i, n) REP(i, 0, n) typedef long long ll; typedef pair P; typedef vector vi; typedef vector vvi; typedef vector

vp; typedef vector vl; int dx[4] = {0, -1, 0, 1}; int dy[4] = {1, 0, -1, 0}; int sign[2] = {1, -1}; template bool chmax(T &a, T b) { if(a < b) { a = b; return 1; } return 0; } template bool chmin(T &a, T b) { if(a > b) { a = b; return 1; } return 0; } ll modpow(ll a, ll b, ll m) { if(b == 0) return 1; ll t = modpow(a, b / 2, m); if(b & 1) { return (t * t % m) * a % m; } else { return t * t % m; } } template T gcd(T m, T n) { if(n == 0) return m; return gcd(n, m % n); } struct edge { int to; ll cost; edge(int t, ll c) { to = t, cost = c; } }; typedef vector> graph; // using mint = modint998244353; // // using mint = modint1000000007; // constexpr int MAX_COM = 1000001; // mint fac[MAX_COM], ifac[MAX_COM]; // void initfac() { // fac[0] = ifac[0] = 1; // REP(i, 1, MAX_COM) fac[i] = i * fac[i - 1]; // REP(i, 1, MAX_COM) ifac[i] = 1 / fac[i]; // } // mint nCr(int n, int r){ // if(r < 0 || n < r) return 0; // return fac[n] * ifac[n - r] * ifac[r]; // } template< class T > struct Matrix { vector< vector< T > > A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {} Matrix(size_t n) : A(n, vector< T >(n, 0)) {}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector< T > &operator[](int k) const { return (A.at(k)); } inline vector< T > &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector< vector< T > > C(n, vector< T >(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for(int i = 0; i < n; i++) { os << "["; for(int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for(int i = 0; i < width(); i++) { int idx = -1; for(int j = i; j < width(); j++) { if(B[j][i] != 0) idx = j; } if(idx == -1) return (0); if(i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for(int j = 0; j < width(); j++) { B[i][j] /= vv; } for(int j = i + 1; j < width(); j++) { T a = B[j][i]; for(int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; typedef Matrix S; S op(S x, S y){ return y * x; } S e(){ return Matrix::I(3); } // typedef int F; // S mapping(F f, S x){ // return f + x; // } // F composition(F f, F g){ // return f + g; // } // F id(){ return 0; } void solve(){ int n; cin >> n; segtree seg(n); rep(i, n) { double p, q, r; cin >> p >> q >> r; double rad = r / 180 * PI; Matrix a(3), b(3), c(3); a = Matrix::I(3); c = Matrix::I(3); a[0][2] = -p; a[1][2] = -q; c[0][2] = p; c[1][2] = q; b[0][0] = cos(rad); b[0][1] = -sin(rad); b[1][0] = sin(rad); b[1][1] = cos(rad); b[2][2] = 1; auto mat = c * b * a; seg.set(i, mat); cout << mat << endl; } int q; cin >> q; rep(i, q){ int s, t; double x, y; cin >> s >> t >> x >> y; auto a = seg.prod(s - 1, t); cout << a[0][0] * x + a[0][1] * y + a[0][2] << " " << a[1][0] * x + a[1][1] * y + a[1][2] << endl; } } int main(){ cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(16); // initfac(); int t; t = 1; // cin >> t; while (t--) { solve(); } }