#line 1 "/home/maspy/compro/library/my_template.hpp" #include using namespace std; using ll = long long; using pi = pair; using vi = vector; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; template using vc = vector; template using vvc = vector>; template using vvvc = vector>; template using vvvvc = vector>; template using vvvvvc = vector>; template using pq = priority_queue; template using pqg = priority_queue, greater>; #define vec(type, name, ...) vector name(__VA_ARGS__) #define vv(type, name, h, ...) \ vector> name(h, vector(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector>> name( \ h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name( \ a, vector>>( \ b, vector>(c, vector(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define FOR4_R(i, a, b, c) for (ll i = (b)-1; i >= ll(a); i -= (c)) #define overload4(a, b, c, d, e, ...) e #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) \ overload4(__VA_ARGS__, FOR4_R, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) for (ll t = s; t >= 0; t = (t == 0 ? -1 : (t - 1) & s)) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll template T SUM(vector &A) { T sum = T(0); for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template pair divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } ll binary_search(function check, ll ok, ll ng) { assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; if (check(x)) ok = x; else ng = x; } return ok; } template inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } vi s_to_vi(const string &S, char first_char) { vi A(S.size()); FOR(i, S.size()) { A[i] = S[i] - first_char; } return A; } template vector cumsum(vector &A, int off = 1) { int N = A.size(); vector B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } template vc bincount(const vc &A, int size) { vc C(size); for (auto &&x: A) { ++C[x]; } return C; } template vector argsort(const vector &A) { // stable vector ids(A.size()); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return A[i] < A[j] || (A[i] == A[j] && i < j); }); return ids; } // A[I[0]], A[I[1]], ... template vc rearrange(const vc &A, const vc &I) { int n = len(A); assert(len(I) == n); vc B(n); FOR(i, n) B[i] = A[I[i]]; return B; } #line 1 "/home/maspy/compro/library/other/io.hpp" // based on yosupo's fastio #include namespace detail { template std::true_type check_value(int); template std::false_type check_value(long); } // namespace detail template struct is_modint : decltype(detail::check_value(0)) {}; template using is_modint_t = enable_if_t::value>; template using is_not_modint_t = enable_if_t::value>; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template ::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template * = nullptr> bool read_single(T &ref) { long long val = 0; bool f = read_single(val); ref = T(val); return f; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template bool read_single(vector &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template bool read_single(pair &p) { return (read_single(p.first) && read_single(p.second)); } template bool read_single(tuple &p) { return (read_single(get<0>(p)) && read_single(get<1>(p)) && read_single(get<2>(p))); } template bool read_single(tuple &p) { return (read_single(get<0>(p)) && read_single(get<1>(p)) && read_single(get<2>(p)) && read_single(get<3>(p))); } void read() {} template void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char &val) { if (pos == SIZE) flush(); line[pos++] = val; } template ::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string &s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double &x) { ostringstream oss; oss << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double &x) { ostringstream oss; oss << setprecision(15) << x; string s = oss.str(); write(s); } template * = nullptr> void write(T &ref) { write(ref.val); } template void write(const vector &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template void write(const pair &val) { write(val.first); write(' '); write(val.second); } template void write(const tuple &val) { auto &[a, b, c] = val; write(a), write(' '), write(b), write(' '), write(c); } template void write(const tuple &val) { auto &[a, b, c, d] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d); } template void write(const tuple &val) { auto &[a, b, c, d, e] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e); } template void write(const tuple &val) { auto &[a, b, c, d, e, f] = val; write(a), write(' '), write(b), write(' '), write(c), write(' '), write(d), write(' '), write(e), write(' '), write(f); } template void write(const array &val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if(val < 0){ negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if(negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward(tail)...); } void read() {} template void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ read(name) #define VV(type, name, h, w) \ vector> name(h, vector(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "/home/maspy/compro/library/ds/rectangle_add_ractangle_sum.hpp" #line 2 "/home/maspy/compro/library/alg/group_add.hpp" template struct Group_Add { using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return n * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 3 "/home/maspy/compro/library/ds/fenwick.hpp" template struct FenwickTree { using E = typename AbelGroup::value_type; int n; vector dat; E total; FenwickTree() : FenwickTree(0) {} FenwickTree(int n) : n(n), total(AbelGroup::unit()) { assert(AbelGroup::commute); dat.assign(n, AbelGroup::unit()); } FenwickTree(vc v) : n(len(v)), total(AbelGroup::unit()) { assert(AbelGroup::commute); FOR(i, n) total = AbelGroup::op(total, v[i]); dat = v; FOR3(i, 1, n + 1) { int j = i + (i & -i); if (j <= n) dat[j - 1] = AbelGroup::op(dat[i - 1], dat[j - 1]); } } void reset(){ total = AbelGroup::unit(); dat.assign(n, AbelGroup::unit()); } E sum(int k) { E ret = AbelGroup::unit(); for (; k > 0; k -= k & -k) ret = AbelGroup::op(ret, dat[k - 1]); return ret; } E sum(int L, int R) { E pos = AbelGroup::unit(); while (L < R) { pos = AbelGroup::op(pos, dat[R - 1]); R -= R & -R; } E neg = AbelGroup::unit(); while (R < L) { neg = AbelGroup::op(neg, dat[L - 1]); L -= L & -L; } return AbelGroup::op(pos, AbelGroup::inverse(neg)); } E sum_all() { return total; } void add(int k, E x) { total = AbelGroup::op(total, x); for (++k; k <= n; k += k & -k) dat[k - 1] = AbelGroup::op(dat[k - 1], x); } template int max_right(F& check) { assert(check(E(0))); ll i = 0; E s = AbelGroup::unit(); int k = 1; int N = len(dat) + 1; while (2 * k < N) k *= 2; while (k) { if (i + k < N && check(AbelGroup::op(s, dat[i + k - 1]))) { i += k; s = AbelGroup::op(s, dat[i - 1]); } k >>= 1; } return i; } int find_kth(E k) { auto check = [&](E x) -> bool { return x <= k; }; return max_right(check); } void debug() { print("fenwick", dat); } }; #line 2 "/home/maspy/compro/library/ds/point_add_rectangle_sum.hpp" // 点群はクエリより前に全部入力すること (add_pt)。 // 同じ点群に対してクエリをやり直せる。 // SMALL=true にすると、座圧をしないため少し高速 template struct Point_Add_Rectangle_Sum { using WT = typename AbelGroup::value_type; bool compressed; int Q; vi X, Y; vi keyX, keyY; ll min_x, max_x, min_y, max_y; vc wt; vc>> add; vc>> query_l; vc>> query_r; Point_Add_Rectangle_Sum() : compressed(0), Q(0) {} void add_query(ll x, ll y, WT w = 1) { assert(!compressed); X.eb(x), Y.eb(y), wt.eb(w); keyX.eb(x), keyY.eb(y); } void compress() { compressed = 1; int N = len(X); if (!SMALL) { UNIQUE(keyX), UNIQUE(keyY); add.resize(len(keyX) + 1); FOR(i, N) { ll x = X[i], y = Y[i]; WT w = wt[i]; x = LB(keyX, x), y = LB(keyY, y); add[x].eb(y, w); } } else { min_x = (N == 0 ? 0 : MIN(X)); max_x = (N == 0 ? 0 : MAX(X)); min_y = (N == 0 ? 0 : MIN(Y)); max_y = (N == 0 ? 0 : MAX(Y)); add.resize(max_x - min_x + 2); FOR(i, N) { ll x = X[i], y = Y[i]; WT w = wt[i]; x -= min_x, y -= min_y; add[x].eb(y, w); } } query_l.resize(len(add)); query_r.resize(len(add)); } void sum_query(ll xl, ll yl, ll xr, ll yr) { if (!compressed) compress(); if (!SMALL) { xl = LB(keyX, xl), xr = LB(keyX, xr); yl = LB(keyY, yl), yr = LB(keyY, yr); } else { xl -= min_x, xr -= min_x; yl -= min_y, yr -= min_y; xl = clamp(xl, 0LL, max_x - min_x + 1); xr = clamp(xr, 0LL, max_x - min_x + 1); yl = clamp(yl, 0LL, max_y - min_y + 1); yr = clamp(yr, 0LL, max_y - min_y + 1); } query_l[xl].eb(Q, yl, yr); query_r[xr].eb(Q, yl, yr); ++Q; } vc calc() { assert(compressed); vc ANS(Q, AbelGroup::unit()); int k = (SMALL ? max_y - min_y + 2 : len(keyY) + 1); FenwickTree bit(k); FOR(x, len(add)) { for (auto&& t: query_l[x]) { auto [q, yl, yr] = t; ANS[q] = AbelGroup::op(ANS[q] , AbelGroup::inverse(bit.sum(yl, yr))); } for (auto&& t: query_r[x]) { auto [q, yl, yr] = t; ANS[q] = AbelGroup::op(ANS[q] , bit.sum(yl, yr)); } for (auto&& t: add[x]) { auto [y, w] = t; bit.add(y, w); } query_l[x].clear(); query_r[x].clear(); } Q = 0; return ANS; } }; #line 4 "/home/maspy/compro/library/ds/rectangle_add_ractangle_sum.hpp" template struct Rectangle_Add_Rectangle_Sum { using WT = typename AbelGroup::value_type; using WT4 = tuple; struct G { using X = WT4; using value_type = X; static X op(const X &x, const X &y) { auto &[ax, bx, cx, dx] = x; auto &[ay, by, cy, dy] = y; return {AbelGroup::op(ax, ay), AbelGroup::op(bx, by), AbelGroup::op(cx, cy), AbelGroup::op(dx, dy)}; } static X inverse(const X &x) { auto &[ax, bx, cx, dx] = x; return {AbelGroup::inverse(ax), AbelGroup::inverse(bx), AbelGroup::inverse(cx), AbelGroup::inverse(dx)}; } static X power(const X &x, ll n) { auto &[ax, bx, cx, dx] = x; return {AbelGroup::power(ax, n), AbelGroup::power(bx, n), AbelGroup::power(cx, n), AbelGroup::power(dx, n)}; } static constexpr X unit() { auto u = AbelGroup::unit(); return {u, u, u, u}; } static constexpr bool commute = true; }; vc> query; Point_Add_Rectangle_Sum X; ll min_x = 0, min_y = 0; void add_query(ll xl, ll yl, ll xr, ll yr, WT w) { assert(xl <= xr && yl <= yr); chmin(min_x, xl); chmin(min_y, yl); // (xl,yl) に (x-xl)(y-yl) を加算 auto nw = AbelGroup::inverse(w); X.add_query(xl, yl, {w, AbelGroup::power(w, -yl), AbelGroup::power(w, -xl), AbelGroup::power(w, +xl * yl)}); // (xl,yr) に (x-xl)(y-yr) を減算 X.add_query(xl, yr, {nw, AbelGroup::power(w, +yr), AbelGroup::power(w, +xl), AbelGroup::power(w, -xl * yr)}); // (xr,yl) に (x-xr)(y-yl) を減算 X.add_query(xr, yl, {nw, AbelGroup::power(w, +yl), AbelGroup::power(w, +xr), AbelGroup::power(w, -xr * yl)}); // (xr,yr) に (x-xr)(y-yr) を加算 X.add_query(xr, yr, {w, AbelGroup::power(w, -yr), AbelGroup::power(w, -xr), AbelGroup::power(w, +xr * yr)}); } void sum_query(ll xl, ll yl, ll xr, ll yr) { assert(xl <= xr && yl <= yr); query.eb(xl, yl, xr, yr); X.sum_query(min_x, min_y, xl, yl); X.sum_query(min_x, min_y, xl, yr); X.sum_query(min_x, min_y, xr, yl); X.sum_query(min_x, min_y, xr, yr); } vc calc() { ll Q = len(query); vc ANS(Q); auto tmp = X.calc(); assert(len(tmp) == 4 * Q); FOR(q, Q) { auto [xl, yl, xr, yr] = query[q]; WT p = AbelGroup::unit(), m = AbelGroup::unit(); { auto [a, b, c, d] = tmp[4 * q + 0]; p = AbelGroup::op(p, AbelGroup::power(a, xl * yl)); p = AbelGroup::op(p, AbelGroup::power(b, xl)); p = AbelGroup::op(p, AbelGroup::power(c, yl)); p = AbelGroup::op(p, d); } { auto [a, b, c, d] = tmp[4 * q + 1]; m = AbelGroup::op(m, AbelGroup::power(a, xl * yr)); m = AbelGroup::op(m, AbelGroup::power(b, xl)); m = AbelGroup::op(m, AbelGroup::power(c, yr)); m = AbelGroup::op(m, d); } { auto [a, b, c, d] = tmp[4 * q + 2]; m = AbelGroup::op(m, AbelGroup::power(a, xr * yl)); m = AbelGroup::op(m, AbelGroup::power(b, xr)); m = AbelGroup::op(m, AbelGroup::power(c, yl)); m = AbelGroup::op(m, d); } { auto [a, b, c, d] = tmp[4 * q + 3]; p = AbelGroup::op(p, AbelGroup::power(a, xr * yr)); p = AbelGroup::op(p, AbelGroup::power(b, xr)); p = AbelGroup::op(p, AbelGroup::power(c, yr)); p = AbelGroup::op(p, d); } ANS[q] = AbelGroup::op(p, AbelGroup::inverse(m)); } return ANS; } }; #line 4 "main.cpp" void solve() { LL(H, W, N, M); using T = tuple; vc dat; FOR(i, N) { LL(xl, xr, yl, yr, a); --xl, --yl; dat.eb(xl, yl, xr, yr, a); } Rectangle_Add_Rectangle_Sum, 1> X; FOR(M) { LL(x, y, b, c); --x, --y; ll xl = x - b, xr = x + b + 1; ll yl = y - b, yr = y + b + 1; X.add_query(xl, yl, xr, yr, c); } FOR(i, N) { auto [xl, yl, xr, yr, a] = dat[i]; X.sum_query(xl, yl, xr, yr); } auto res = X.calc(); ll ANS = 0; FOR(i, N) { auto [xl, yl, xr, yr, a] = dat[i]; ll x = res[i]; if (a > x) ++ANS; } print(ANS); } signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << setprecision(15); ll T = 1; // LL(T); FOR(T) solve(); return 0; }