#include using namespace std; #include #include //#define int long long #define REP(i,m,n) for(int i=(m);i<(n);i++) #define rep(i,n) REP(i,0,n) #define pb push_back #define all(a) a.begin(),a.end() #define rall(c) (c).rbegin(),(c).rend() #define mp make_pair #define endl '\n' //#define vec vector //#define mat vector > #define fi first #define se second #define double long double typedef long long ll; typedef unsigned long long ull; typedef pair pll; //typedef long double ld; typedef complex Complex; const ll INF=1e9+7; const ll MOD=998244353; const ll inf=INF*INF; const ll mod=INF; const ll MAX=200010; const double PI=acos(-1.0); typedef vector > mat; typedef vector vec; ll dx[]={0,1,0,-1}; ll dy[]={1,0,-1,0}; namespace internal { template struct csr { std::vector start; std::vector elist; csr(int n, const std::vector>& edges) : start(n + 1), elist(edges.size()) { for (auto e : edges) { start[e.first + 1]++; } for (int i = 1; i <= n; i++) { start[i] += start[i - 1]; } auto counter = start; for (auto e : edges) { elist[counter[e.first]++] = e.second; } } }; // Reference: // R. Tarjan, // Depth-First Search and Linear Graph Algorithms struct scc_graph { public: scc_graph(int n) : _n(n) {} int num_vertices() { return _n; } void add_edge(int from, int to) { edges.push_back({from, {to}}); } // @return pair of (# of scc, scc id) std::pair> scc_ids() { auto g = csr(_n, edges); int now_ord = 0, group_num = 0; std::vector visited, low(_n), ord(_n, -1), ids(_n); visited.reserve(_n); auto dfs = [&](auto self, int v) -> void { low[v] = ord[v] = now_ord++; visited.push_back(v); for (int i = g.start[v]; i < g.start[v + 1]; i++) { auto to = g.elist[i].to; if (ord[to] == -1) { self(self, to); low[v] = std::min(low[v], low[to]); } else { low[v] = std::min(low[v], ord[to]); } } if (low[v] == ord[v]) { while (true) { int u = visited.back(); visited.pop_back(); ord[u] = _n; ids[u] = group_num; if (u == v) break; } group_num++; } }; for (int i = 0; i < _n; i++) { if (ord[i] == -1) dfs(dfs, i); } for (auto& x : ids) { x = group_num - 1 - x; } return {group_num, ids}; } std::vector> scc() { auto ids = scc_ids(); int group_num = ids.first; std::vector counts(group_num); for (auto x : ids.second) counts[x]++; std::vector> groups(ids.first); for (int i = 0; i < group_num; i++) { groups[i].reserve(counts[i]); } for (int i = 0; i < _n; i++) { groups[ids.second[i]].push_back(i); } return groups; } private: int _n; struct edge { int to; }; std::vector> edges; }; } struct scc_graph { public: scc_graph() : internal(0) {} scc_graph(int n) : internal(n) {} void add_edge(int from, int to) { int n = internal.num_vertices(); assert(0 <= from && from < n); assert(0 <= to && to < n); internal.add_edge(from, to); } std::vector> scc() { return internal.scc(); } private: internal::scc_graph internal; }; void solve(){ ll N;cin>>N; vectorX(N),A(N); rep(i,N)cin>>X[i]; rep(i,N)cin>>A[i]; setst; rep(i,N){ st.insert(X[i]); st.insert(X[i]-A[i]); st.insert(X[i]+A[i]); } mapidx; ll m=0; for(auto e:st){ idx[e]=m; m++; } scc_graph G(m); vector >G2(m); rep(i,N){ G.add_edge(idx[X[i]+A[i]],idx[X[i]]); G.add_edge(idx[X[i]-A[i]],idx[X[i]]); G2[idx[X[i]+A[i]]].pb(idx[X[i]]); G2[idx[X[i]-A[i]]].pb(idx[X[i]]); } auto f=G.scc(); vectorma(m); for(auto e:st){ ma[idx[e]]=e; } vectorused(m); rep(i,f.size()){ ll maa=0; rep(j,f[i].size()){ maa=max(maa,ma[f[i][j]]); used[f[i][j]]=1; } rep(j,f[i].size()){ ma[f[i][j]]=maa; for(auto e:G2[f[i][j]]){ ma[e]=max(ma[e],maa); } } } rep(i,N){ cout<