import sys input = sys.stdin.buffer.readline sys.setrecursionlimit(10 ** 7) U = 10 ** 6 + 100 class SCC_graph(object): def __init__(self, n): """n:ノード数""" self.n = n self.edges = [] def add_edge(self, frm, to): """frm -> toへ有効辺を張る""" self.edges.append((frm, to)) def __csr(self): self.start = [0] * (self.n + 1) self.elist = [0] * len(self.edges) for frm, to in self.edges: self.start[frm + 1] += 1 for i in range(1, self.n + 1): self.start[i] += self.start[i - 1] cnt = self.start[:] for frm, to in self.edges: self.elist[cnt[frm]] = to cnt[frm] += 1 def __dfs(self, v): self.low[v] = self.now_ord self.order[v] = self.now_ord self.now_ord += 1 self.visited.append(v) for i in range(self.start[v], self.start[v + 1]): to = self.elist[i] if self.order[to] == -1: self.__dfs(to) self.low[v] = min(self.low[v], self.low[to]) else: self.low[v] = min(self.low[v], self.order[to]) if self.low[v] == self.order[v]: while self.visited: u = self.visited.pop() self.order[u] = self.n self.ids[u] = self.group_num if u == v: break self.group_num += 1 def _make_scc_ids(self): self.__csr() self.now_ord = 0 self.group_num = 0 self.visited = [] self.low = [0] * self.n self.ids = [0] * self.n self.order = [-1] * self.n for i in range(self.n): if self.order[i] == -1: self.__dfs(i) for i in range(self.n): self.ids[i] = self.group_num - 1 - self.ids[i] def scc(self): """ 強連結成分分解O(N+M), groupsを返す self.ids[i] -> 頂点iがトポロジカル順で何番目の成分に属するか groups[j] -> トポロジカル順でj番目の強連結成分に属する頂点集合 """ self._make_scc_ids() groups = [[] for _ in range(self.group_num)] for i in range(self.n): groups[self.ids[i]].append(i) return groups def make_condensation_graph(self): """強連結成分間の隣接リスト、入次数/出次数のリストを返す""" n = self.n G = [[] for _ in range(self.group_num)] indeg = [0] * self.group_num outdeg = [0] * self.group_num used = set() for s, t in self.edges: s = self.ids[s] t = self.ids[t] if s == t: continue if s * n + t in used: continue # G[s].append(t) G[t].append(s) indeg[t] += 1 outdeg[s] += 1 used.add(s * n + t) return G, indeg, outdeg class TwoSAT(SCC_graph): def __init__(self, n): """ n: ノード数""" self._n = n super().__init__(2 * n) def add_clause(self, i, f, j, g): """ (xi == f) or (xj == g)というクローズを追加 """ x = 2 * i + (0 if f else 1) y = 2 * j + (1 if g else 0) self.add_edge(x, y) x = 2 * j + (0 if g else 1) y = 2 * i + (1 if f else 0) self.add_edge(x, y) def satisfiable(self): """ 条件を満たす割り当てが存在するか判定する """ self._make_scc_ids() self._answer = [False] * self._n for i in range(self._n): if self.ids[2 * i] == self.ids[2 * i + 1]: return False self._answer[i] = (self.ids[2 * i] < self.ids[2 * i + 1]) return True def answer(self): """ 最後に読んだsatisfiableのクローズを満たす割り当てを返す """ return self._answer def merge(a, b): x = b while x: a *= 10 x //= 10 return a + b def main(N, AB): sieve = [0] * (U + 1) prime = [] for i in range(2, U + 1): if sieve[i] == 0: sieve[i] = i prime.append(i) for p in prime: if p > sieve[i] or i * p > U: break sieve[i * p] = p ts = TwoSAT(N) for i in range(N): for j in range(N): for s in range(2): for t in range(2): val = merge(AB[i][s], AB[j][t]) if sieve[val] == val: ts.add_clause(i, s, j, t ^ 1) return ts.satisfiable() N = int(input()) AB = tuple(tuple(map(int, input().split())) for _ in range(N)) if main(N, AB): print("Yes") else: print("No")