#!/usr/bin/env pypy3 from pprint import pprint from string import ascii_lowercase as letter from sys import setrecursionlimit, stdin from typing import Dict, Iterable, Set INF: int = (1 << 62) - 1 MOD1000000007 = 10**9 + 7 MOD998244353 = 998244353 readline = stdin.readline input = lambda: stdin.readline().rstrip('\r\n') def inputs(type_=int): ins = input().split() if isinstance(type_, Iterable): return [t(x) for t, x in zip(type_, ins)] else: return list(map(type_, ins)) def input_(type_=int): a, = inputs(type_) return a def input1() -> int: return int(readline()) inputi = input1 def input2(): a = readline().split() assert len(a) == 2 a[0] = int(a[0]) a[1] = int(a[1]) return a def input3(): a = readline().split() assert len(a) == 3 a[0] = int(a[0]) a[1] = int(a[1]) a[2] = int(a[2]) return a def input4(): a = readline().split() assert len(a) == 4 a[0] = int(a[0]) a[1] = int(a[1]) a[2] = int(a[2]) a[3] = int(a[3]) return a yn = ['no', 'yes'] Yn = ['No', 'Yes'] YN = ['NO', 'YES'] # start coding def isqrt(n): """ nの平方根をニュートン法で求める. 計算量: O(log(n))以下 (O(loglog(n))?) Ref: http://www.ritsumei.ac.jp/se/~osaka/rejime/suuti/suuti2001.pdf """ x, y = n, (n + 1) // 2 while y < x: x, y = y, (y + n // y) // 2 return x def factor(n: int) -> Dict[int, int]: if n < 2: return dict() res = dict() for i in range(2, isqrt(n) + 1): if n % i == 0: res[i] = 0 while n % i == 0: res[i] += 1 n //= i if n != 1: res[n] = 1 return res class Osak: def __init__(self, max_n: int) -> None: self.max_n = max_n self._create_table() def _create_table(self): """ (max_n + 1)個の要素を持つリストaであってa[k]がkの最小の素因数であるようなリストをself.tableに設定する. 計算量: O(max_n * loglog(max_n)) """ a = [None] * (self.max_n + 1) for k in range(2, self.max_n + 1): if a[k] is not None: continue for p in range(k, self.max_n + 1, k): if a[p] is None: a[p] = k self.table = a def is_prime(self, n: int) -> bool: return n >= 2 and self.table[n] == n def factor(self, n: int) -> dict: assert 0 <= n < len(self.table) if n <= 1: return {} d = {} while n != 1: k = self.table[n] d[k] = 0 while n % k == 0: d[k] += 1 n //= k return d def __str__(self) -> str: return f'{self.__class__.__name__} ' n = inputi() osak = Osak(n) res = 0 for i in range(1, n + 1): d = factor(i) t = 1 for p, c in d.items(): if c % 2 == 1: t *= p res += isqrt(n // t) print(res)