#ifndef LOCAL #define FAST_IO #endif // ===== template.hpp ===== #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define OVERRIDE(a, b, c, d, ...) d #define REP2(i, n) for (i32 i = 0; i < (i32) (n); ++i) #define REP3(i, m, n) for (i32 i = (i32) (m); i < (i32) (n); ++i) #define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__) #define PER(i, n) for (i32 i = (i32) (n) - 1; i >= 0; --i) #define ALL(x) begin(x), end(x) using namespace std; using u32 = unsigned int; using u64 = unsigned long long; using u128 = __uint128_t; using i32 = signed int; using i64 = signed long long; using i128 = __int128_t; using f64 = double; using f80 = long double; template using Vec = vector; template bool chmin(T &x, const T &y) { if (x > y) { x = y; return true; } return false; } template bool chmax(T &x, const T &y) { if (x < y) { x = y; return true; } return false; } istream &operator>>(istream &is, i128 &x) { i64 v; is >> v; x = v; return is; } ostream &operator<<(ostream &os, i128 x) { os << (i64) x; return os; } istream &operator>>(istream &is, u128 &x) { u64 v; is >> v; x = v; return is; } ostream &operator<<(ostream &os, u128 x) { os << (u64) x; return os; } template > Vec sort_index(i32 n, F f, Comp comp = Comp()) { Vec idx(n); iota(ALL(idx), 0); sort(ALL(idx), [&](i32 i, i32 j) -> bool { return comp(f(i), f(j)); }); return idx; } [[maybe_unused]] constexpr i32 INF = 1000000100; [[maybe_unused]] constexpr i64 INF64 = 3000000000000000100; #ifdef FAST_IO __attribute__((constructor)) void fast_io() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(10); } #endif // ===== template.hpp ===== #ifdef DEBUGF #include "cpl/template/debug.hpp" #else #define DBG(x) (void) 0 #endif // ===== graph.hpp ===== #include #include #include #include template class Graph { std::vector> edges; public: Graph() : edges() {} Graph(int v) : edges(v) { assert(v >= 0); } std::vector add_vertices(int n) { int v = (int) edges.size(); std::vector idx(n); std::iota(idx.begin(), idx.end(), v); edges.resize(edges.size() + n); return idx; } template void add_directed_edge(int from, int to, T &&...val) { assert(from >= 0 && from < (int) edges.size()); assert(to >= 0 && to < (int) edges.size()); edges[from].emplace_back(Edge(to, std::forward(val)...)); } template void add_undirected_edge(int u, int v, const T &...val) { assert(u >= 0 && u < (int) edges.size()); assert(v >= 0 && v < (int) edges.size()); edges[u].emplace_back(Edge(v, val...)); edges[v].emplace_back(Edge(u, val...)); } int size() const { return (int) edges.size(); } const std::vector &operator[](int v) const { assert(v >= 0 && v < (int) edges.size()); return edges[v]; } std::vector &operator[](int v) { assert(v >= 0 && v < (int) edges.size()); return edges[v]; } }; struct UnweightedEdge { int to; UnweightedEdge(int t) : to(t) {} explicit operator int() const { return to; } using Weight = std::size_t; Weight weight() const { return 1; } }; template struct WeightedEdge { int to; T wt; WeightedEdge(int t, const T &w) : to(t), wt(w) {} explicit operator int() const { return to; } using Weight = T; Weight weight() const { return wt; } }; // ===== graph.hpp ===== // ===== rerooting.hpp ===== #include #include #include #include template T rerooting_sub1( const G &g, const T &id, const Apply &ap, const Merge &me, int v, int p, std::vector>> &dp) { T acc = id; for (int i = 0; i < (int) g[v].size(); ++i) { if ((int) g[v][i] != p) { T val = rerooting_sub1(g, id, ap, me, (int) g[v][i], v, dp); dp[v][i] = ap(val, v, g[v][i]); acc = me(acc, *dp[v][i]); } } return acc; } template void rerooting_sub2( const G &g, const T &id, const Apply &ap, const Merge &me, int root, std::vector>> &dp) { std::queue> que; que.emplace(root, id); while (!que.empty()) { auto [v, val] = que.front(); que.pop(); std::vector acc_l(g[v].size() + 1); acc_l[0] = id; int emp_idx = -1; for (int i = 0; i < (int) g[v].size(); ++i) { if (!(bool) dp[v][i]) { dp[v][i] = ap(val, v, g[v][i]); emp_idx = i; } acc_l[i + 1] = me(acc_l[i], *dp[v][i]); } T acc_r = id; for (int i = (int) g[v].size() - 1; i >= 0; --i) { if (i != emp_idx) { que.emplace((int) g[v][i], me(acc_l[i], acc_r)); } acc_r = me(*dp[v][i], acc_r); } } } // Apply: Fn(T, int, E) -> T // Merge: Fn(T, T) -> T template std::vector rerooting(const G &g, const T &id, const Apply &ap, const Merge &me) { std::vector>> dp(g.size()); for (int i = 0; i < (int) g.size(); ++i) { dp[i].resize(g[i].size(), std::nullopt); } rerooting_sub1(g, id, ap, me, 0, 0, dp); rerooting_sub2(g, id, ap, me, 0, dp); std::vector buf(g.size(), id); for (int i = 0; i < (int) g.size(); ++i) { for (std::optional &val : dp[i]) { buf[i] = me(buf[i], std::move(*val)); } } return buf; } template std::vector> rerooting_raw(const G &g, const T &id, const Apply &ap, const Merge &me) { std::vector>> dp(g.size()); for (int i = 0; i < (int) g.size(); ++i) { dp[i].resize(g[i].size(), std::nullopt); } rerooting_sub1(g, id, ap, me, 0, 0, dp); rerooting_sub2(g, id, ap, me, 0, dp); std::vector> buf(g.size()); for (int i = 0; i < (int) g.size(); ++i) { buf[i].reserve(g[i].size()); for (const std::optional &val : dp[i]) { buf[i].emplace_back(*val); } } return buf; } // ===== rerooting.hpp ===== int main() { i32 n; cin >> n; Graph g(n); map, pair> edge_id; REP(e, n - 1) { i32 u, v; cin >> u >> v; --u; --v; edge_id[pair(u, v)] = pair(g[u].size(), g[v].size()); g.add_undirected_edge(u, v); } using Value = pair; const Value id(0, 0); const auto me = [](const Value &x, const Value &y) -> Value { if (x.first == -1) { return y; } else if (y.first == -1) { return x; } else { return Value(max(x.first, y.first), max({x.second, y.second, x.first + y.first})); } }; const auto ap = [](Value x, i32 v, i32 e) -> Value { if (x.first == -1) { return x; } else { return Value(x.first + 1, x.second); } }; Vec> dp = rerooting_raw(g, id, ap, me); i32 ans = INF; for (auto [e, id] : edge_id) { Value comp0 = dp[e.first][id.first]; Value comp1 = dp[e.second][id.second]; DBG(e.first); DBG(e.second); DBG(comp0.first); DBG(comp0.second); DBG(comp1.first); DBG(comp1.second); chmin(ans, max({comp0.second, comp1.second, (comp1.second + 1) / 2 + (comp0.second + 1) / 2 + 1})); } cout << ans << '\n'; }