# a[i] a[j] a[k] # which a[i] > a[j] < a[k] # について, 2^(i+k-2) # 2^iを入れる a[i]に class BIT: """ 0-indexed. query ... return the sum [0 to m] sum ... return the sum [a to b] sumall ... return the sum [all] add ... 'add' number to element (be careful that it doesn't set a value.) search ... the sum version of bisect.right output ... return the n-th element listout ... return the BIT list """ def query(self, m): res = 0 while m > 0: res += self.bit[m] m -= m&(-m) return res def sum(self, a, b): return self.query(b)-self.query(a) def sumall(self): bitlen = self.bitlen-1 return self.query(bitlen) def add(self, m, x): m += 1 bitlen = len(self.bit) while m <= bitlen-1: self.bit[m] += x m += m&(-m) return def search(self, a): tmpsum = 0 i = 0 k = (self.bitlen-1).bit_length() while k >= 0: tmpk = 2**k if i+tmpk <= self.bitlen-1: if tmpsum+self.bit[i+tmpk] < a: tmpsum += self.bit[i+tmpk] i += tmpk k = k-1 return i+1 def output(self, a): return self.query(a+1)-self.query(a) def listout(self): return self.bit def __init__(self, a): self.bitlen = a self.bit = [0]*a def compress(arr): *XS, = set(arr) XS.sort() return {cmp_e: cmp_i for cmp_i, cmp_e in enumerate(XS)} n = int(input()) a = list(map(int,input().split())) a_c = compress(a) m = len(a_c) bit = BIT(m+2) #i時点で, a[i] についての 2^i の和 bitA = BIT(m+2) #bitA ... a[i] > a[j] となる a[j] についての, 2^i の和 bitB = BIT(m+2) #bitB ... a[i] < a[j] となる a[j] についての, 2^i の和 mod = 10**9 + 7 nibeki = [0] * (n+1) nibeki[0] = 1 for i in range(n): nibeki[i+1] = nibeki[i] * 2 % mod ans = 0 for i in range(n): targ = a_c[a[i]] ans += bitA.sum(0, targ) * nibeki[n-i-1] % mod ans %= mod ans += bitB.sum(targ+1, m+1) * nibeki[n-i-1] % mod ans %= mod bit.add(targ, nibeki[i]) bitA.add(targ, bit.sum(targ+1, m+1)) bitB.add(targ, bit.sum(0, targ)) print(ans)